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Abstract: A recent article by Danae Hernandez-Cortes and Kyle Meng (HCM) suggests 

that the cap-and-trade program in California was accompanied by improvements in the 

degree of environmental inequity in the state. We note that that the model used to 

estimate this improvement is not well-designed to capture the variation in facility 

adjustment to the cap-and-trade program that is at the heart of the environmental 

justice debate about potential shifts in co-pollutant exposure. We also show that even if 

that were a proper approach, the estimates offered by HCM may be problematic due to 

data issues, including proper identification of facilities subject to the cap, shifting results 

when we require that facilities have observations both before and after the cap, and 

robustness when we apply their method estimates beyond their selected subsample to 

the broader range of facilities. As such, the environmental justice implications of 

California’s carbon market remain an unsettled empirical question. 
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Introduction 

The fundamental selling-point of market-based environmental instruments, both taxes and permits, is 

that they allow polluters to choose different rates of abatement based on different marginal costs of 

abatement, with the promise of achieving a given systemwide total abatement at least cost (Stavins 

1998). However, this quality of enabling discretionary differences, in contrast to environmental 

regulations that mandate identical across-the-board reductions in pollution, is a concern for 

environmental justice (EJ) scholars and advocates who worry about potential variations in co-pollutant 

reduction (Boyce and Pastor 2013). 

While the issue of cap-and-trade is frequently the subject of ideological debates, a new article “Do 

Environmental Markets Cause Environmental Injustice? Evidence from California’s Carbon Market” by 

Hernandez-Cortez and Meng (2023, henceforth HCM) rightly notes that the question of whether carbon 

markets improve or worsen current environmental disparities in exposure is hard to predict from 

theoretical considerations alone and hence it is the facts that matter. In their article, HCM highlight their 

introduction of a comparison between cap-and-trade and non-covered facilities and the application of 

air modeling as improvements over previous approaches, including the geographic proximity analyses 

that we and others have utilized in looking at relative air pollution burdens from market-based 

strategies (Cushing et al. 2018; Pastor et al. 2022; Plummer et al. 2022). They conclude that carbon 

markets in California led to a reduction of an environmental justice (EJ) gap. 

We raise here two concerns about HCM’s analysis. The first is whether the method HCM employ to 

estimate the effect of cap-and-trade can answer the question of variation among regulated facilities at 

the heart of the policy debate. The second has to do with a range of data issues, including the 

classification of regulated and non-regulated facilities, the unbalanced panel and identification of 

trends, and the restricted sample of facilities, all of which call into question the internal and external 

validity of the HCM findings. The analytical and data issues in HCM leave open the question of whether 

California’s environmental market experiment was associated with improvements or worsening of 

environmental injustice. 

Do HCM Ask the Right Question? 

One of the issues raised by environmental justice (EJ) critics of cap-and-trade (C&T), or indeed both tax 

and permit systems, is that allowing firms to decide whether to curtail emissions or, effectively, to pay 

others to reduce, will necessarily lead to uneven geographic reductions. Such unevenness by space 

matters little with regard to greenhouse gas emissions (GHGs) – a reduction anywhere is of general 

benefit – but it could matter with regard to local co-pollutants, such as PM, NOX, or other hazardous air 

pollutants that are often correlated with the GHG emissions in both levels and changes (Boyce and 

Pastor 2013; Zwickl, Sturn, and Boyce 2021) . 

A geographically differentiated pattern of emissions reduction is actually the intent of a carbon market: 

one wants to wring efficiency out of imposing GHG standards by allowing some firms who can more 

easily and cheaply meet reduction goals to do so while others facing higher barriers to change seek to 

forego (or minimize) such reductions. The environmental justice gap thus depends on the extent of the 
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total reduction and the pattern of heterogeneity in changes, particularly with regard to impact on EJ 

communities.  

HCM’s approach starts by attempting to identify the effect of the California carbon permit system, 

estimating a common percentage reduction across regulated facilities relative to non-regulated facilities.  

To get at heterogeneity, in a second stage, HCM then converts these assumed constant-percentage 

effects into predicted changes in physical quantities of pollutants and applies an air model to estimate 

an effect on the aggregate pollution disparities between the bulk of California neighborhoods and 

Disadvantaged Communities (DACs). DACs are the California regulatory term for communities assessed 

by the state’s CalEnviroScreen tool to be socially vulnerable and overexposed to environmental hazards.  

To estimate the average effect, HCM utilize the following equation on an unbalanced panel of covered 

and non-covered facilities observed before and after the policy implementation to obtain predicted 

values that they then feed into their air model:  

Equation 1:  asinh 𝑌𝑗𝑡
𝑝

 = 𝜅1
𝑝

[Cj x t] + 𝜅2
𝑝

[Cj x 1(t ≥ 2013) x t] + 𝛷𝑗
𝑝

 + 𝛾𝑡
𝑝

 + 𝜇𝑗𝑡
𝑝

 

where p refers to the pollutant, j refers to facility, Cj is an indicator for whether facility j is covered by 

the C&T regulation, t is the year, 𝛷𝑗
𝑝 is the facility fixed effect, 𝛾𝑡

𝑝 is a year fixed effect (to control for 

changing macroeconomic, demand, and technological conditions), 𝜅1
𝑝 is the differential 2008-2012 pre-

trend for the cap-and-trade facilities before the policy actually went into effect, 𝜅2
𝑝

 is the key estimate of 

the differential trend after 2012 (2013-2017) when cap-and-trade regulations went into effect, and 𝜇𝑗𝑡
𝑝  is 

the error term.1 

While a trend break,, 𝜅2
𝑝, that is negative would signal some relative improvement to the pre-policy 

trend, key to the finding of an absolute reduction in estimated pollution under C&T is the differential 

post-trend estimate (𝜅1
𝑝 + 𝜅2

𝑝); in Table 1 of HCM (2023), all these estimates for various pollutants are 

reported to be negative. Note that what is required for this to be true is that the trend break, 𝜅2
𝑝, be 

negative of a large enough magnitude to overwhelm the pre-trend which is uniformly estimated by HCM 

to be positive (that is, relative pollution from the C&T facilities is estimated to have been rising prior to 

C&T).2 

Note, moreover, that what is being estimated (after controlling for year and facility fixed effects) is a 

common percentage effect – in short, the world is modeled as having the highly unlikely feature that 

every regulated firm adjusts to the imposition of C&T by exactly the same percent. The logic seems to be 

that this allows for the researcher to deduce a “pure” C&T effect since the actual data might include 

noise due to other factors. But in this case, divergence in outcomes does not emerge only from random 

dispersion around a mean but occurs because the intent of the policy design is differential adjustment. 

An estimating strategy that rules that out by design seems misplaced.  

This search for a precise C&T policy effect also leads the authors to reduce their sample to a sharply 

restricted set of facilities. They specifically eliminate refineries and electricity generators because they 

were subject to other confounding regulations; because selection into the treated group depends on 

crossing a threshold for GHG emissions, they also drop other large facilities to “ensure better 

comparability between treated and control facilities” (Hernandez-Cortes and Meng 2023:6). HCM winds 

up considering about five percent of the GHGs regulated by the program. While the authors report that 
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they later test whether an analysis of the whole dataset finds similar results in terms of their estimates 

of what they term the “EJ gap,” we suggest below that there may be reasons to question that assertion.  

We see at least two interpretive challenges with the HCM approach. First, the policy-induced variation in 

emission changes, as we have noted, is not random noise – it’s the point of the program, and so the goal 

should be to look for systematic differences in the response. Consider a situation where there are only 

two facilities; faced with C&T, one firm chooses to reduce its pollution while the other does not, with 

the gain from the first sufficient to make up for the second’s choice to not abate. Assuming a common 

percentage effect for both evades the distributional dynamic; in the appendix, we show why this 

matters, how variation is a serious issue in this data set, and what difference it might make to 

consideration that variation at a facility level based on some measure of proximity to a DAC.  

We acknowledge that estimating variation rather than a common percentage effect is a challenging 

econometric proposition which may explain why we and researchers at California’s Office of 

Environmental Health Hazard Assessment (OEHHA) have taken simpler approaches to looking at 

individual facility-level responses before and after C&T (Cushing et al. 2018; Plummer et al. 2022).3 In 

any case, finding that there is relative reduction overall (and then feeding the average reduction into an 

air model) usefully demonstrates that cap-and-trade is actually capping something – but the question EJ 

critics have raised is about the variation in facility response to regulations, particularly when those 

facilities affect different neighborhoods.  

The variation issue is particularly important because applying a common percentage estimate means 

that heterogeneity in the physical quantity of predicted abatement will vary by initial size. If initial 

pollution is unequally distributed – which both we and HCM highlight (Hernandez-Cortes and Meng 

2023; Pastor et al. 2022), applying a common percentage prediction is likely to predict an improvement 

in the EJ gap whatever variation in emission changes may have actually occurred.  

HCM acknowledge the limits of imposing a common percentage effect and so introduce a robustness 

test in which the C&T differential trend estimates vary by the initial pollution level of the facility. A 

systematically differential reduction by initial pollution level is of some interest but it does not address 

the fundamental issue of variable adjustment across facilities by design – nor is this necessarily a good 

test of the EJ concern since, as it turns out, initial pollution level may be a poor proxy for EJ impact per 

se.  

In this dataset, for example, having multiple nearby facilities may be a strong correlate for EJ 

communities but such a correlation is not as clear when it comes to the magnitude of pollution at 

individual facilities (Pastor et al. 2022).4 An alternative approach, taken by Sheriff, interacts cap-and-

trade status with the percent of people of color living “downwind” of emitters, providing a clearer test 

of the EJ concern; that study finds that there were relative improvements for modeled toxic emissions 

from C&T polluters in communities of color in California (Sheriff 2023).5 

The HCM article does not utilize such a direct interaction strategy and might best be thought of as a 

policy thought experiment of how a mandate for across-the-board equal percentage reductions in 

pollution would affect the EJ gap in California. This thought experiment, of enormous importance to 

designing environmentally just approaches to decarbonization, is contrary to both the policy design and 

the heterogenous experience of California communities during the study period (see the appendix and 

Plummer et al. 2022). 
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Do HCM Use the Right Data? 

While we believe that imposing a common trend is analytically problematic, we explore several other 

data issues that raise concerns about the accuracy of the analysis. The first is which facilities fall under 

C&T. As HCM note in a footnote, they found what they believed to be an anomaly in the data that they 

downloaded from the state’s Pollution Mapping Tool, a dataset that links information on greenhouse 

gas emission with co-pollutants.6 That anomaly: thirty nine facilities “switched” status from regulated to 

unregulated, or vice versa, in 2016-2017. Since the authors wish to ascribe time-invariant status (partly 

to be able to estimate pre-policy trends), they deal with this by assuming that the previous status in 

their data was accurate and so they reassign the subsequent data to the prior status, and then later test 

for robustness by dropping those facilities.7 

The appearance of switching seems to be partly an artifact of their data assembly: according to the 

authors, they had a dataset downloaded that went up to 2015, and then added 2016 and later 2017 

data to it in steps (Hernandez-Cortes and Meng 2022:10). It was in the last step that they apparently 

discovered the issue and applied the “fix” noted above. We instead downloaded a full dataset as of 2017 

– which did not include any switches in regulatory status. We also consulted the California Air Resources 

Board (CARB) and the state’s Office of Environmental Hazards and Health Assessment (OEHHA) to 

maintain consistency with the C&T tags used in the CARB/OEHHA analysis (Plummer et al. 2022).8 

In a productive exchange of comments about this issue, HCM note that “Why C&T regulation, or 

treatment, status has changed across versions of CARB’s dataset is worth looking into, in consultation 

with CARB data managers. However, we note that misassignment of treatment status may not be an 

issue if such errors occur at random.” (Hernandez-Cortes and Meng 2022:10) As noted, we did look into 

it with CARB data managers. After an extended back-and-forth with the actual data providers, we 

adopted the C&T status at the end of the post-policy period that OEHHA used in its own study, 

particularly since that squares with how CARB has issued its official data in the years since.9 

Of course, this would be of little concern if coming into agreement with OEHHA and CARB made little 

difference to the results. That is not the case. To check on the impact of using the verified status, we 

started by following the data restrictions imposed by HCM (no refineries, no electricity generators, and 

no larger emitters) and utilizing their C&T tags; doing that, we were able to exactly reproduce their 

Table 1 results and these are shown in the first column of our own Table 1 below.10 Note that HCM 

estimate a sharply downward post-policy trend (𝜅1
𝑝 + 𝜅2

𝑝) for all pollutants, with nearly all estimates 

denoted as significant. Feeding the estimates from those equations into an air model is likely to yield 

impressive improvements overall, with size effects particularly large where pollution was highest to 

begin with. 

In the second column of Table 1, we utilize the C&T tags that came from the 2017 Pollution Mapping 

Tool and discussion and alignment with CARB and OEHHA. First, note that the number of facilities 

covered is reduced by 34 when we used the corrected (or verified) C&T tags. The reason: HCM include in 

their control group facilities that were designated in the data with a “blank” rather than a “Yes” or “No.” 

These are facilities that have emissions in the data from 2008 to 2010 but not thereafter. While that 

count includes a few facilities that actually shut down before cap-and-trade was implemented, many 

others are biomass or other facilities that were initially required to report to the state’s GHG inventory 

but were then allowed to stop reporting before the C&T program began (even though nearly all kept 
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operating and emitting co-pollutants).  They were never subject to cap-and-trade regulation and they 

disappear from the database before the policy, and hence we are not convinced that they should be 

assigned to the control group for considering policy impacts (although including them as part of the 

control group would not substantively alter what we present).11 

What do we find when we use the verified C&T tags for the facilities? Looking at second column, one 

can see that we obtain very different results: while the pre-policy trends are similar, the policy break 

trends fall and the post-policy trends are just barely negative and always insignificant, with p-values 

rarely below 0.20. For GHG, the post-policy break falls by half, while remaining significant. The drop in 

the post-policy break is about 1/3 for the co-pollutants, and none retain statistical significance.  The 

post-policy trend (the net of the pre-policy trend and the post-policy break) is always close to zero. For 

example, a post-trend estimate of -.111 for GHGs in the HCM regression fell in absolute terms to -.015 

while the post-trend estimate for PM2.5 shifts from -.039 to -0.008. Other pollutants (PM2.5, NOX, and 

SOX) had similar patterns. 
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Table 1. Coefficient Estimates from Five Specifications 

First Estimate 

(HCM, Table 1)

Second 

Estimate 

(verified, cap-

and-trade 

tags)

Third Estimate 

(verified & 

within-unit)

Fourth 

Estimate 

(verified, 

within-unit, 

CEIDARS data)

Fifth Estimate 

(HCM C&T, 

asinh 

specification, 

full sample)

pre-policy trend 0.187 *** 0.146 *** 0.124 *** 0.246 ***
(0.052) (0.036) (0.032) (0.060)

post-policy break -0.297 *** -0.162 *** -0.124 * -0.239 ***
(0.077) (0.058) (0.069) (0.070)

post-policy trend -0.111 *** -0.015 0.000 0.007
(0.036) (0.038) (0.051) (0.040)

# of observations 2,054 1,957 1,208 5,528

# of facilities 316 282 135 758

# of C&T facilities 106 112 91 329

pre-policy trend 0.058 # 0.061 0.052 -0.014
(0.043) (0.047) (0.041) (0.030)

post-policy break -0.097 * -0.069 # -0.049 0.009
(0.048) (0.053) (0.045) (0.049)

post-policy trend -0.039 ** -0.008 0.003 -0.005
(0.018) (0.018) (0.003) (0.025)

# of observations 1,968 1,869 1,177 5,244

# of facilities 302 268 130 728

# of C&T facilities 104 108 89 327

pre-policy trend 0.083 ** 0.086 # 0.081 ** 0.025 -0.017
(0.033) (0.035) (0.032) (0.021) (0.031)

post-policy break -0.117 *** -0.084 * -0.072 * -0.018 0.017
(0.040) (0.043) (0.041) (0.039) (0.050)

post-policy trend -0.034 * 0.002 0.009 0.007 0.000
(0.018) (0.016) (0.021) (0.024) (0.026)

# of observations 1,968 1,869 1,177 2,508 5,244

# of facilities 302 268 130 257 728

# of C&T facilities 104 108 89 95 327

pre-policy trend 0.075 * 0.066 # 0.027 0.010 -0.033
(0.039) (0.044) (0.037) (0.025) (0.034)

post-policy break -0.104 ** -0.057 0.035 -0.003 0.036
(0.050) (0.051) (0.056) (0.035) (0.043)

post-policy trend -0.029 # 0.009 0.062 * 0.007 0.003
(0.019) (0.019) (0.037) (0.019) (0.019)

# of observations 1,970 1,871 1,177 2,492 5,247

# of facilities 303 269 130 256 729

# of C&T facilities 104 108 89 95 327

pre-policy trend 0.006 0.005 0.004 0.013 -0.019
(0.035) (0.032) (0.037) (0.021) (0.031)

post-policy break -0.037 -0.030 -0.027 -0.022 0.024
(0.043) (0.045) (0.057) (0.031) (0.040)

post-policy trend -0.031 # -0.025 -0.023 -0.010 0.005
(0.019) (0.022) (0.027) (0.026) (0.017)

# of observations 1,965 1,866 1,174 2,455 5,229

# of facilities 303 269 130 252 729

# of C&T facilities 104 108 89 92 327

*** significant at the .01 level; ** significant at the .05 level; * significant at the .10 level; # significant at the .20 level

Table 1. Coefficient Estimates from Five Specifications

TotalGHG

PM2.5

PM10

NOX

SOX
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The importance of HCM’s inclusion as part of the control group those facilities that stopped reporting as 

of 2011 (and hence were recorded as “blanks” in the data) raises another consideration: whether a 

facility had observations both before and after C&T.  In our next regression, reported in Column 3 of 

Table1, we specifically required that any facility included in the HCM subsample have at least one 

observation in 2008-2011, one in 2012 on eve of the policy (in order to estimate a final pre-policy 

reference point), and one in the post-policy period of 2013-2107. This is not a requirement of the HCM 

estimating approach. While they list 316 facilities in Table 1, only 135 of those (about 43 percent) meet 

the “within-unit” criteria suggested above. In short, the majority of the facilities from which they derive 

their estimates are not providing data on both sides of the policy break. 

As noted, 34 of those facilities are the “blank” reporters that do not make this “within-unit” restriction 

because they stopped reporting emissions since they never came into the trading system; thus, they 

contribute to the pre-policy trend (in the sense that HCM’s estimates of C&T facility trends are 

benchmarked against them) but they play no role in the subsequent baseline against which one can 

measure differential C&T post-policy trends.12 However, most of the decline from, say, 282 facilities for 

the GHG series in the second panel of Table 1 to the 135 facilities in the third panel requiring within-unit 

observations is because of 97 facilities that began reporting in 2012 (the last year of the pre-policy 

period, hence contributing little to the pre-policy trend) and 49 that began reporting in 2013 (in which 

case they contribute only to the post-policy differential trend estimate).13 

HCM have suggested that estimating trends in such an unbalanced panel might not be problematic if 

entry and exit was random (Hernandez-Cortes and Meng 2022:9).14 However, when 34 facilities fall out 

of the size and sector-constrained database in 2011, 97 facilities appear in 2012, and another 49 start 

reporting only in 2013, the pattern seems decidedly non-random.15 There were shifts in the reporting 

requirements to GHG mandatory reporting that led to a large number of facilities appearing in the data 

for the first time in 2012, for example, even though they had been in operation well before then.16 In 

short, they have abruptly appeared in the Pollution Mapping Tool data but not in the world. 

In any case, at least one reasonable robustness test would be to see what happens when one limits the 

sample to facilities that have observations on both sides of the trend break, which limits identification to 

policy-induced within-unit changes in facilities that continue to report.17 When we do that and use the 

C&T tags provided by CARB in the third column of Table 1, the estimated post-trends for GHGs and 

PM2.5 are close to zero. Since these are relative trends, what this means is that the cap-and-trade 

sector in this regression was doing little better at reducing both GHGs and co-pollutants than the control 

group.  

While this finding of essentially no difference in the post-policy trend might seem odd given that the 

primary intention of the C&T policy is to reduce GHG emissions more than might occur otherwise, it is 

likely that the sector and facility size matter; in this subsample of smaller facilities, we may have more 

reporters that were likely to forgo expensive investments to reduce local GHG emissions and instead 

purchase allowances. Since one hopes that the cap did have some bite on emissions overall, this 

suggests the possibility that the HCM sector- and size-constrained subsample – selected to estimate a 

“pure” effect – may not be representative of all facilities. 
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Since one might be concerned about the reduction is the number of facilities considered, there is yet 

another reasonable approach to this issue of the sensitivity of the analysis to requiring within-unit 

reporting. The Pollution Mapping Tool from which HCM draw their data combines GHGs from one 

reporting source and co-pollutants from another, specifically the California Emissions Inventory 

Development and Reporting System (CEIDARS). We obtained data from CEIDARS for the years 2008 to 

2017 and matched it in with the facilities in the Mapping Tool.18 We were able to link in nearly all the 

facilities with one set of exceptions: the Pollution Mapping Tool includes a select number of oil and gas 

emitters that are really reporting entities for satellite emitters at multiple, highly dispersed locations.19  

The advantage of linking to the underlining CEIDARS data is that we get a more precise and longer 

duration accounting of the pattern for three co-pollutants, PM10, NOX, and SOX, for their both the pre-

policy and policy periods.20 In this more complete dataset, the pattern of entry and exit from the data is 

less pervasive and more plausibly random: of the 256 facilities in a PM10 regression for the HCM size- 

and sector-constrained sample, 231 start in 2008 and end in 2017, and the rest of the series begin and 

end in other years without the bunching of exits in 2010 and entries in 2012 and 2013 that are seen in 

the HCM regressions. 

The results of this approach are shown in the fourth column of Table 1. First, note that the number of 

facilities included now is quite close to those in the second column – that is, we have quite good 

coverage for the co-pollutants even when we require within-unit observations from before and after the 

policy was implemented. The results again suggest a flat post-policy trend relative to the control group 

(although to be clear, none of the coefficients for any relative trend affect attains significance in size and 

sector restricted subsample used by HCM).21  

Finally, recall that HCM suggest that the results for the full sample are generally the same as for their 

sector- and size-constrained sample. While we are able to exactly reproduce HCM’s results for their 

restricted sample, HCM do not present a table with the stage 1 results (prior to the air model) for the 

full sample. In the fifth column of our Table 1, we show the results from regressions in which we apply 

HCM’s analytical approach over the entire sample, that is, we use the inverse hyperbolic sine (asinh) 

specification and the HCM (non-verified) C&T tags which includes the “blanks” that we suggested should 

not really be in the control group. The post-policy estimates are all close to zero which is, as we have 

noted, not likely to generate a reduction in the size of the EJ gap.22  

How can these results be consistent with the assertion in their paper that their basic findings hold across 

the whole sample? As it turns out, Table S12 in HCM’s published paper – which is meant to show the 

results of a process of applying the asinh specification to generate predictions over the whole sample 

and then running those through the air model to generate an estimate of the EJ gap – has coefficients 

and standard errors for PM2.5, PM10, and NOX that are exactly identical to the coefficients and 

standard errors for those pollutants in Table 1 of the 2020 working version of their paper which relied 

on a log (rather than an inverse hyperbolic sine) transformation of the dependent. In the appendix, we 

note that there are reasons why dropping observations values that are zero (which is what a log 

specification does) is likely to generate different results. 

The basic conclusions of this data exploration are straightforward. First, it matters which set of cap-and-

trade tags one uses; we believe there are good reasons to use the tags that were verified by CARB and 

OEEHA. Second, while an unbalanced panel may pose no problems for some analyses under particular 

conditions of random entry and exit, looking at before-and-after effects in which the majority of 
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facilities in question do not appear both before and after the policy change seems problematic, 

particularly because the entry and exit timing into the data is not random and does not in fact generally 

capture the actual entrance or exit of facilities into the world. Restricting the sample to include 

observations on both sides of the policy break or supplementing the sample with a fuller range of data 

from the original CEIDARS source for the co-pollutants yields different results. Finally, whether or not 

the HCM results on the EJ Gap hold across the whole sample is not a settled question given the 

regression results we obtain and the evidence HCM have presented. 

Conclusion 

We conclude this comment as we began:  we appreciate that HCM have advanced the field with air 

modeling and we concur with their policy conclusion that market-based approaches will not necessarily 

improve (or worsen) EJ gaps, and so EJ-specific policies must be put in place (Hernandez-Cortes and 

Meng 2023:15). However, the bulk of HCM’s empirical conclusions depend, at least in part, on whether 

the constant percentage estimate of the C&T effect fed into their air model is relevant to the policy 

question at hand, whether the estimates may be impacted by any non-random data irregularities, and 

whether the subsample on which they focus is illustrative or anomalous. 

Assuming a common percentage effect does not effectively address the EJ concern about disparities in 

adjustment effects and, as we note in the appendix, is not a particularly good description of the data. 

We would suggest that both future analysis of the EJ implications and future policy design to 

incorporate EJ in carbon regulation should directly address the variation in response among C&T 

facilities. In that regard, concerned policymakers might benefit from applying HCM’s sophisticated 

plume air modeling to actual emissions rather than common percentage predicted emissions to better 

assess the variation in policy-induced local-pollution impact across EJ communities on California.23 

Our work further suggests that even by the standards of a common percentage approach – which we 

think addresses the cap and not the trade portion of the program – the results obtained by HCM are 

highly sensitive to a set of data decisions with regard to which facilities are actually regulated by cap-

and-trade, whether one should focus on within-unit analysis, and whether one should deal with dataset 

issues having to do with non-random entry and exit into the reporting system by including the full set of 

available co-pollutant data.  

While we have concerns about cap-and-trade, we should be clear that we are not opponents of carbon  

pricing and have actually argued that a few environmental justice safeguards could help insure a more 

favorable reception to such efforts (Boyce, Ash, and Ranalli 2023; Boyce and Pastor 2019). It is also quite 

possible that the data patterns will reveal an improvement in EJ outcomes as the program continues 

over time. However, the key point of this comment is that the jury is still out on the impact of market 

strategies on environmental justice. Further research is needed and the advances offered by HCM will 

be an important part of that effort. 
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Endnotes 

 
1  The asinh = ln(𝑥 + √𝑥2 + 1) refers to an inverse hyperbolic sine, a function that performs much like taking a 

natural log, i.e., with differences usually translating into percentage changes, but allows for the retention of 
observations where the value to be transformed is zero or negative. As we note in the appendix, while retaining 
zero’s has a certain appeal, it also creates estimation problems in this particular dataset. 

2  Whether the trend break, 𝜅2
𝑝, is a meaningful signal also depends on the reliability of the pre-trend estimate; in 

in the appendix, we discuss why the pre-trend estimates HCM offer may be problematic, particularly for GHGs. 

3  In a recent effort, Currie et al. do try to get at this issue by employing a “triple difference” regression approach 
to looking at the impact of the Clean Air Act on PM2.5; the findings suggest that within-county improvements 
were less for African Americans than for non-Hispanic whites although the overall story is that their version of 
the EJ gap shrank because areas of the country with a higher share of Black residents were more likely to see 
improvements due to regulations (Currie, Voorheis, and Walker 2023). The authors also utilize a quantile 
regression approach to model differential impacts on different points on the national pollution distribution. In 
general, this is a more convincing approach to estimating variation – and the exploration of variability is both 
useful and admirable given that the policy (unlike cap-and-trade) is not intended to create variation or trade-offs 
but rather to bring every area out of a “nonattainment” status.  

4 For example, for facilities HCM designate as cap-and-trade for which we were able to link average 
CalEnviroScreen scores within five miles, the correlation between HCM’s preferred size metric (average annual 
metric tons of GHGs) and that CalEnviroScreen measure is .0017, with a significance level of .9872, essentially a 
finding of no relationship.  

5 Sheriff (2023) connects C&T and non-C&T facilities with air-modeled data on toxics taken from the U.S. EPA’s 
Toxic Release Inventory (TRI); for those familiar, Sheriff specifically uses the Risk-Screening Environmental 
Indicators (RSEI) model which we have also used in other work (see, for example, Ash et al. (2012)). Whether this 
also applies to other co-pollutants, like PM2.5, is an open empirical question but Sheriff does point to an 
approach that could use a difference-in-difference regression and allow variation in this setting a la Currie et al. 
(Currie et al. 2023). 

6  One of the co-authors worked on an early report that linked the GHG and co-pollutant data before the state 
took on this task (Cushing et al. 2016); it was the demonstration that it was both possible and of public interest 
that prompted the Air Resources Board to do the data assembly for broader use that resulting in the Pollution 
Mapping Tool. This familiarity with the underlying data construction explains in part our facility in relinking the 
reporting facilities to the underlying co-pollutant data, something that will become important later in this 
analysis. 

7  If HCM had tested what would have happened if they had not reassigned facilities to what they thought was the 
previous C&T status (rather than testing for robustness only by dropping those facilities), they would have gone 
part of the way to addressing some of the issues we raise. 

8 To give the reader a flavor of the size of the issue, HCM’s GHG regression has 316 facilities in the subsample (that 
are not singletons and so will enter the regression). Of those, 22 were switched by HCM from their new reported 
values to the older values. 3 of those switches were valid – the facilities had actually stopped reporting and the 
last reported values were accurate. 19 of the 22 switches did not agree with what was in the consistent 2020 
downloaded database and likely should not have been switched. All of those facilities were checked with OEHHA 
facility-by-facility and “verified.” Upon the direction of OEHHA (and to be consistent with their own study), 
another four in the subsample were re-tagged as a “Yes”; those changes were eventually implemented by CARB 
for the relevant years in subsequent versions of the Pollution Mapping Tool, suggesting that these were 
appropriate corrections to make.  

9  Along with OEHHA, in our own analysis, we made a series of additional corrections to the data that included 
dropping facilities where either a large increase or a large decrease in pollutants had little to do with cap-and-
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trade (such as a firm that shut down operations after being targeted for lead emissions or facilities that 
significantly reconfigured their reporting for other reasons – such as acquiring new plants from other firms) or 
where there were known data errors. We did not apply these extra data corrections when trying to replicate the 
HCM results here although there may a good reason to do so if accuracy rather than replication were the goal; 
we discuss in the appendix how the failure to apply such corrections can also affect coefficient estimates. 

10  Aside from the additional corrections noted in the previous footnote, there are slight differences in the datasets 
used by HCM and our team, partly because our data which was updated throughout as of 2017 (rather than 
added to the 2008-2015 data in two separate steps) had some backward corrections of emissions levels. To 
reproduce the HCM results, we used their data and simply applied both their C&T tags and the C&T tags provided 
by state agencies. Both research teams exchanged data and code as we were seeking to resolve some of the 
inconsistencies; both teams wanted to be sure that the differences in results reflected differences in approach, 
and we thank HCM for the collegial spirit that has characterized our exchanges. 

11  Of the 34 facilities in the HCM subsample that stop reporting GHG emissions to the Pollution Mapping Tool data, 
30 can be linked to a co-pollutant database we describe later, with 27 of those having co-pollutant observations, 
and 25 of those have co-pollutant data that stretches to 2015 or 2017. In short, these facilities stopped reporting 
their greenhouse gas emissions but the overwhelming majority continued to operate; they were tagged as 
“blank” in the data because they were temporarily required to report as CARB was setting up its reporting in 
2008-2010 but were never subject to potential regulation under cap-and-trade. In our view, they are not really 
part of the control group and if they were, one should definitely not include them as though they actually 
stopped operation in 2010 – when the overwhelming majority did not. As it turns out, bringing them back in as 
“No’s” – which we think is inappropriate – would not alter the pattern of results we discuss. 

12  These facilities are actually dropped out in the first round in which we applied the CARB-verified C&T tags 
because they were coded in the 2017 downloaded data as “blank” – because they were never in the system – but 
counted by HCM as “No” for the pre-policy period. 

13  One additional facility also drops out because it has no observations for 2012. As we will see when we look at 
the actual CEIDARS data, these facilities did not all start up in those years; rather, it was the first time they began 
reporting to the inventory. As such, the HCM regression is not really capturing their pre-policy trend. 

14  In an initial set of exchanges with HCM, the authors suggested that they required two observations before and 
after the imposition of policy change to be able to estimate trends – but as it turns out, they did not. A growing 
literature underlines the importance of clean controls and panel balance (Cengiz et al. 2019). 

15  The problem seems to be a bit more pronounced in the size and sector-constrained subsample HCM use in their 
regression. For the 758 facilities that have at least two years of observations (and so would make it into an HCM-
style regression with no restrictions on before and after observations – since singletons drop out in the 
regression exercise itself), 173 would fall out for starting in 2012 or later which amounts to less than a quarter of 
the sample versus the fall-out of nearly half the facilities for a late start in the subsample HCM think is most 
appropriate for the testing of effects. 

16  See the 2008-2012 Emission Summary at https://ww2.arb.ca.gov/mrr-data The new facilities were smaller and 
thus more likely to impact the HCM regression sample as hinted at in the previous footnote. We thank Danny 
Cullenward for explaining to us the shift in reporting requirements. 

17 Shutdowns and entry of facilities are potentially important responses to the cap-and-trade program. The data do 
not permit HCM or us to systematically identify exiters or entrants in response to the program itself; as we note 
in the appendix, when we do investigate the history of those facilities that shut down, the reasons seem to have 
little to do with cap-and-trade. In the replication portion of this exercise, we follow HCM and retain the exiters as 
though this was a consequence of the program; in the appendix, we show how that approach can severely bias 
the estimates of trends. 

18  We originally did this because the Pollution Mapping Tool reports rounded estimates for the co-pollutants and 
such rounding led to zero observations on co-pollutants (unlike on GHGs) when there were really were positive 
emissions; as such, we wanted to check on sensitivity to improved data accuracy in our work in (Pastor et al., 

https://ww2.arb.ca.gov/mrr-data
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2022). As it turns out, that actually had little impact on our analysis but we realized that it provided a way to 
cover more years of data for this replication.  

19  As we discuss in our own work, a share of the oil and gas facilities in the Pollution Mapping Tool are central 
reporting entities for multiple emitters that are often a long distance away. In our analysis, we obtained all the 
underlying locations and co-pollutant reports so we could determine the impact on neighborhoods. However, we 
did that only for cap-and-trade rather than control facilities and the additional level of work to link CEIDARS data 
for all reporters, including non-C&T reporters, seemed excessive for this replication and so we simply dropped 
that limited number of reporters that essentially collect and aggregate data from multiple satellites; in the HCM 
subsample, that amounted to ten reporters. However, it should be noted that HCM assume that the geographic 
location of these select reporting entities given in the Pollution Mapping Tool is where the emissions are actually 
released – it is not and we think a correction to the underlying locations would be best for the air model since 
one would likely want the plume to start in the right place.  

20  PM 2.5 was not easily available as it requires additional processing by state authorities.  

21  If we relax our assumption that the “blanks” really are not part of the control group and instead set them as 
“No” and include the full CEIDARS data for those facilities if it exists on both sides of the policy break, the number 
of observations and facilities rises slightly but the general pattern of insignificant remains the same.  

22 In the appendix, we also explore the fit of the HCM model using an event study approach. This also suggests that 
there may be a poor fit between the HCM estimates offered in their Table 1 and the actual post-policy pattern 
for the whole sample. 

23  OEHHA does employ air modeling in their analysis of cap-and-trade, although their approach is similar to ours in 
the use of simple comparisons, in their case of quantity versus percentage impacts (Plummer et al. 2022). They 
find some EJ improvements using that aggregate approach, adding to the picture of mixed results. Interestingly, 
we suspect that the issue of the EJ effects of cap-and-trade is likely to be of continued interest to academics but 
of lesser interest to policy makers as the portion of GHGs regulated by market strategies seems to be on the 
decline in California and running into resistance elsewhere. 
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Appendix. A Few More Data and Analytic Concerns 

In this appendix, we explore a few more data and analytic issues. We start by discussing the reliability of 

HCM’s pre-trend estimate, 𝜅1
𝑝, and post-trend estimate, 𝜅2

𝑝 for GHGs. We then contrast the actual 

variations in the data and the predictions for co-pollutants that emerge from the HCM specification. 

Finally, we report on a non-parametric event study which questions the fit of the HCM approach for the 

whole data set. 

The Reliability of the GHG Estimates and the Implications 

We decided to investigate the GHG estimates because the coefficient estimates on the GHG series are 

rather surprising. For example, CM report that “C&T reduced emissions annually between 2012–2017 at 

an average rate of 9% . . . for GHG” (Hernandez-Cortes and Meng 2023:2), a pace that bears little 

resemblance to what actually happened to GHG emissions in the cap-and-trade sector and would be a 

remarkable overachievement given that the cap was only calling for a three percent annual reduction 

over the relevant time period.  

Of course, the estimated reduction is partly dependent on the steepness of the pre-policy trend, and 

there are some reasons to be cautious about that since there was a shift in reporting requirements for 

GHGs and PM in 2011 – significant enough that there is a warning, particularly about GHGs, on CARB’s 

website for Mandatory GHG reporting ((see https://ww2.arb.ca.gov/mrr-data ). The agency notes that 

one should not connect the 2008-2010 data to the data from 2011-on – which is why we did not do that 

in our own analyses (Cushing et al. 2018; Pastor et al. 2022). Of course, data challenges occur all the 

time and HCM (2022:10) argue that “there is no evidence that these reporting changes were different 

for C&T regulated and unregulated facilities . . . (and) any common reporting changes is addressed in 

HCM’s equation 1 through year-specific fixed effects.” 

To see whether that is the case, in Figure 1, we compare the pattern of mean GHGs for non-C&T and 

C&T facilities over the 2008-2017 period that are in the HCM sector- and size-constrained sample. To 

insure that the pattern is not determined by facilities exiting and entering but by shifts in reporting, we 

require that each facility report observations for all years. As can be seen, not much happens to average 

emissions in the C&T sector over the entire period, while there is a large decline in non-C&T emissions 

between 2010 and 2011, prior to the advent of the policy in 2013, and then a slow and steady decline.1 

Consider how the failure to account for this apparent shift could lead to overstatement of the pre-policy 

trend and the post-policy shift. After all, while the pre-trend 𝜅1
𝑝 is a relative estimate, it tends to draw 

one’s attention to the notion of pollution rising up in the C&T sector prior to policy adoption.2 Of course, 

the flip side is why relative pollution went down so dramatically in the non-C&T sector: if it was due to 

 

1 To verify that this is not just the result of the sectoral constraints, we also looked at the pattern for all facilities 
that have all years of data regardless of sector that meet the size threshold (so that the means are not distorted 
by large outliers). That pattern is nearly identical. 

2  For example, when we first saw the HCM results, we wondered whether firms were stepping up pollution prior 
to having their reduction targets set – we should note that we also wondered why there were such steep 
declines when that didn’t occur in the world but we turn to that below. 
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the differential impact of reporting changes in the non-C&T sector, as suggested by the patterns in the 

data in Figure 1, then the relative pattern for the treatment facilities will be rising sharply in 2011 and 

2012. 

Figure 1 
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Why is there a such difference between the C&T and non-C&T sectors in terms of GHG reporting in 

2011? It turns out that biomass reporters seem to have be more affected by the shift in reporting 

requirements that occurred in 2011. For example, if we just concentrate on non-C&T in the HCM 

sample, and look at the shift in total GHGs between 2010 and 2011, the decline is about 50 percent for 

the high biomass firms and about 3 percent for the low biomass firms. As it turns out, of the 316 

facilities in the HCM regression subsample, 20 of the 21 high-biomass reporters were in the non-C&T 

category and they are the main reason that there is the sharp drop in non-C&T lines in Figure 1.  

Clearly, a commonly shared year fixed effect will not capture this and one needs a dummy variable that 

can account for the difference in a regression analysis of trends. To see the effect of this on the trend 

estimates, we created a variable that tagged a facility as high biomass if its associated NAICS code was 

such that more than half of total GHGs were biomass (with the overwhelming majority of high biomass 

industries crossing a threshold that was much higher than that). We report on the impact of this dummy 

variable below. 
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In any case, this suggests that the pre-policy upward trend in relative GHG emissions in the C&T sector 

might be overstated. What about the sharp post-policy downward trends? As it turns out, another factor 

influencing the HCM results on GHG (and to some extent co-pollutants) has to do with facility 

shutdowns and how those appear in the data. Part of the reason why HCM use an inverse hyperbolic 

sine function for the dependent variable is so that they can include observations where the reported 

total is zero.3  But what does a reading of zero GHGs actually mean if you look at the data carefully? 

By direct examination of cases, we found that zero GHG report indicates that the plant shut down but 

still reported for an additional year or two to the state and so the recorded values are zero. One 

argument for retaining those observations would be if the shutdowns were actually induced by cap-and-

trade – although even then outlier issues might argue for a bit of caution (or at least robustness tests). 

To see whether that was the case, we examined the cases where there was a zero observation (or, in 

some cases, near-zero) for total GHGs and then did research on the history of the facility. While we 

looked at the entire data set, we paid special attention to the nine cases in the HCM size- and sector-

constrained sample which would make it into a within-unit regression of the type in the third column in 

Table 1. 

The nine shutdowns in that subsample included a General Mills plant that reported low demand as its 

cause for stopping operations, two glass manufacturers that faced other environmental mandates, an oil 

facility where a pipeline broke, a food processor that reported that it shut for market conditions, a beef 

processor in Brawley, California that reported the same, and a fertilizer terminal that was purchased and 

seems to have temporarily suspended operation (or at least reporting) shut down during the ownership 

transition. There is also a timber company that suddenly reported a 99.9 percent decline in emissions to 

17 metric tons in the final year of the data; that turns out to have been a misreport for the real figure 

which was 17,034. Finally, there was Exide Technologies, a battery processing plant which was forced to 

suspend operations in 2013 and later shut completely because its lead emissions were posing a threat to 

100,000 neighboring residents. 

In our view, one should exclude those observation-years where the shift to zero GHGs had nothing to do 

with cap-and-trade, at least to test for the robustness of results.4 We should stress that none of the 

regressions included in the main body of the paper tried to make any corrections or exclusions in line 

with the logic above; recall that there we were striving for replication not redoing. Here, we are trying to 

highlight what might happen if you were to account for the high-biomass facilities having a different 

pattern of reporting and for the seeming “shutdowns” that, as we will see, have a big and biased impact 

on the trend estimates for GHGs. 

To follow the action, we trace the impacts the impact of correcting for the biomass reporting and 

excluding the zero observations in a step-by-step approach presented in Table 2 and a series of 

accompanying Figures. In the first column of Table 2, we offer the basic HCM results that are in their 

Table 1 and which were presented in the body of the paper. The visual of this is in Figure 2 where the 

 

3 Relying on the asinh transformation may make sense with the co-pollutants: the Pollution Mapping Tool uses a 
rounded calculation of various co-pollutants and so using the inverse hyperbolic sine can retain low values that 
are positive but have been rounded down to zero (the other alternative is to actually go to the original CEIDARS 
values which have several more digits of accuracy and that is what we did in the fourth regression in Table 1. 

4 We also excluded Excide entirely and dropped the one year of a misreport for the timber company. 
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solid lines capture what we reported before: the mean of the observations for which we have all years 

of data in HCM sample categorized by whether the data is from C&T or non-C&T facilities. The dotted 

line is the mean of the predicted pattern for C&T and non-C&T facilities as indicated by HCM’s 

coefficients.5  

Table 2. GHG Coefficient Estimates from Four Specifications 

First Estimate 

(HCM, Table 1)

Second 

Estimate  

(verified C&T 

& within-unit 

observations)

Third Estimate 

(verified, 

within-unit, 

and high-

biomass 

dummy)

Fourth 

Estimate 

(verified, 

within-unit, 

high-biomass 

dummy, 

excluding 

certain 

shutdowns)

pre-policy trend 0.187 *** 0.124 *** 0.100 *** 0.073 ***
(0.052) (0.032) (0.032) (0.026)

post-policy break -0.297 *** -0.124 *** -0.099 # -0.065 **
(0.077) (0.069) (0.062) (0.027)

post-policy trend -0.111 *** 0.000 0.001 0.008
(0.036) (0.051) (0.051) (0.013)

High Biomass 

(2008-2010) 0.299 0.455
(0.169) * (0.118) ***

# of observations 2,054 1,208 1,208 1,189

# of facilities 316 135 135 134

# of C&T facilities 106 91 91 90

*** significant at the .01 level; ** significant at the .05 level; * significant at the .10 level; # 

significant at the .20 level  

 

 

5 One wrinkle here is that for this, we are necessarily using the HCM tags rather than applying their coefficients to 
the verified tags; this seems to be a truer approach to presenting the pattern than they are asserting is the case. 
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Figure 2 
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There are two things to notice in Figure 2. The first is perhaps most immediately striking: the predicted 

values for both C&T and non-C&T facilities are much higher than the actual values. While this might 

seem surprising, consider that the predicted value that HCM generate is 𝑌𝑖�̂� = sinh(𝑦𝑖�̂�) ⋅ 𝑒
𝑀𝑆𝐸

2   where 

𝑦𝑖�̂� incorporates the facility fixed effect estimate, the year fixed effect estimate, and the estimated pre-

trends and post-trends based on the regulatory-status of the facility from Equation 1, with the expanded 

value then multiplied by the term involving mean square error (MSE) to account for the concavity of the 

asinh transformation, as in HCM (2023).6 Because the HCM regression for GHG has a particularly poor 

fit, the large MSE drives up the predicted value and the distance between that the actual value.  

The second thing to note is the widening gap between C&T and non-C&T facilities in the HCM estimates 

for the pre-policy years – which would yield a very high estimate of the pre-policy relative trend, 𝜅1. 

Note that this overestimated pre-trend is then followed by a very steep decline represented by HCM’s 

C&T estimated trend post-policy, 𝜅1 + 𝜅2. Finally, note that the HCM estimates for both C&T and non-

C&T facilities differ sharply from the actual pattern indicated by the solid lines capturing the means.  

 

6 While we adopt HCM’s approach to converting the predicted asinh estimates to predicted estimates, a likely 
superior strategy would be to adopt the Duan smearing estimates which would do better in this sample and 
result in fewer negative predicted values (Duan 1983). 
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Our approach to estimating what might be a more reliable set of trends proceeded in three steps. First, 

we shifted to what we think is a more approach regression, that is, one that uses the verified C&T tags 

and requires that any facility have observations both before and after the policy shift. This is the same as 

the regression in the third column in Table 1 and it is reproduced in the second column of Table 2. The 

resulting predicted values are now depicted in Figure 3. As can be seen, this is a better fit with the data; 

it is closer to the means and patterns of the actual values.  

Figure 3 
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Next, we introduce a dummy variable for 2008-2010 if the facility was in a high biomass industry to 

capture the reporting shift, and we then applied that to the within-unit estimation. The statistical results 

are in the third column of Table 2 and the predicted values are shown in Figure 4. Once again, the solid 

lines are the actual data for facilities that report for all years; the dashed lines with the X’s are estimates 

from those facilities from a regression that includes the high biomass dummy. As can be seen, the 

estimated pre-policy trend for both C&T and non-C&T facilities is now closer to the actual pattern with a 

sharp king in 2011; as might be expected and can be gleaned from Table 2, the estimated relative 

divergence between C&T and non-C&T predicted GHGs is now was lessened to +.10 year from HCM’s 

rather remarkable +.19.  
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Figure 4 
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AP predicted values, biomass dummy,  verified CT = "No"

AP predicted values, biomass dummy,  verified CT = "Yes"

 

Finally, we ran a regression in which we retained the high-biomass dummy and dropped the 

observation-year combinations that reflected shutdowns due to non-C&T factors, the Excide lead 

poisoning shutdown, and the single year of misreported data for the timber company. We acknowledge 

that there may be some valid theoretical reasons to include shutdowns in an analysis of cap-and-trade – 

although we are quite sure from our research of the facility histories in the restricted sample that these 

particular shutdowns and misreports have little to do with cap-and-trade. That, however, is not our 

main point: we are simply trying to address the empirical issue of how these observations in the data 

can introduce potential bias in the estimation strategy, and so should at least be considered as part of 

robustness test. 

Figure 5 shows the result of that last step in our analysis. Once again, the solid lines are the actual data 

for C&T and non-C&T facilities that report GHG emissions for all years; the dashed lines with the X’s 

come from a regression that included both the high-biomass dummy and the elimination of the 

observation-years discussed above. Note from Table 2 that we have lost relatively few observations and 

only one facility (Excide). Note further that the fit between the actual means and these predicted values 

is quite tight both in terms of the pattern and the level. Furthermore, the post-policy relative trend is 

now .008 or basically flat (the two lines for C&T and non-C&T are basically parallel) as can be discerned 

from the figure. 
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Figure 5 

 

 -

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Means of Actual & Predicted Emissions (CO2 equivalent metric tons) for Cap-and-
Trade Facilities Reporting for All Years in the HCM sample, controlling for a 2011 

shift in reporting by biomass producers & excluding researched shutdowns

Verified C&T = "No", HCM sample

Verified C&T = "Yes", HCM sample

AP predicted values, biomass dummy, shutdowns excluded, verified CT = "No"

AP predicted values, biomass dummy, shutdowns excluded, verfied CT = "Yes"

 

To assuage any concerns that this treatment of shutdowns leads to some bias with regard to estimating 

cap-and-trade impacts, we should note that roughly the same number of C&T and non-C&T facilities are 

affected by the exclusion of some observation-years. But if both categories are affected, why does the 

estimated relative divergence shrink so much? Consider two facilities, both of which are trending flat 

from 2013 to 2016, with one posting 50,000 metric tons per year and the other posting 25,000 per year 

– and suppose that both fall to zero in 2017. Now imagining fitting a trend line to each of those: the one 

that was trending higher at 50,000 would have a steeper estimated decline over the period. Now recall 

that the non-C&T facilities generally trend at a lower emission level than the C&T facilities; when an 

outlier of zero at the end of a facility’s time series due to a shutdown (that should have been excluded) 

tugs a regression line down, the steeper impact is on the C&T facility and hence there is a bias toward 

showing a relative decline. 

We should note that the proper treatment of the biomass reporters and the shutdown or misreport 

dynamics does not impact the co-pollutants as much: in general, the introduction of a shift variable for 

the change in reporting and the treatment of shutdowns in a different way means that the coefficients 

reported in a regression along the lines of the third column of Table 1 for PM2.5, PM10, NOX, and SOX 

show a fall in absolute value but nowhere near as much as do the trend coefficients for GHGs, mostly 
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because the problem of reporting co-pollutants after shutdown is not as severe (i.e., CEIDARS reporting 

does not include data when a facility has been closed) and the reporting shifts in PM in 2011 are less 

differential and so more easily captured by a fixed year effect. In any case, this is another instance in 

which more caution with the data would have been warranted. 

Explaining Variation 

In the body of the paper, we note that the common percentage estimation approach obscures 

heterogeneity that is at the heart of EJ concerns. To see the challenge, consider Table 3 in which we 

show four alternative scenarios, each achieving a 10 percent reduction in total regulated-sector 

emissions, but with very different distributions of emission changes across facilities. To illustrate HCM's 

identification of the policy effect by comparison to the non-regulated sector, the table includes a non-

regulated facility, and there are two CT Facilities of which Facility 2 is the larger.  There are three 

periods: pre-policy which is well before the policy goes into effect; the eve of the policy just as it goes 

into effect; and after the policy has had its effect.  

For simplicity and without loss of generality, the example scenarios assume that the non-covered 

comparison facility does not change. We set the values for Facility 1 & 2 such that 𝜅1
𝑝, the pre-policy 

trend, is equal to .05 in all cases (with that driven by Facility 1 experiencing a slight uptick in emissions 

on the eve of the policy). We then assume a global (or common) reduction of 10 percent but consider 

four scenarios. Scenario 1 achieves the global reduction target (or “cap”) through balanced, across-the-

board, common-percentage reductions at both CT Facilities. Scenarios 2 through 4 achieve the same 

global reduction target but through increasingly unbalanced percent reductions across facilities. 

Specifically, Scenario 2 keeps a constant difference in the physical quantity of releases with some 

reduction at each regulated facility, Scenario 3 leaves emissions from the larger facility unchanged with 

all reductions occurring at the other regulated facility, and Scenario 4 has an increase in emissions at the 

larger facility offset by large reductions at the other facility.   

Table 3. Four Emissions Reductions Scenarios (version 1) 

Non CT Non CT Non CT Non CT

Facility Facility 1 Facility 2 Facility Facility 1 Facility 2 Facility Facility 1 Facility 2 Facility Facility 1 Facility 2

pre-policy 100 90 200 100 90 200 100 90 200 100 90 200

eve of policy 100 100 200 100 100 200 100 100 200 100 100 200

after policy takes effect 100 90 180 100 85 185 100 70 200 100 60 210

Measures of change in relative disparity, overall emissions, and emissions gap

Relative CT / Non-CT after 

policy

Change Average CT 

emissions after policy

Change in Emissions Gap 

after policy -10 0 30 50

If you apply the average change to both Facility 1 & Facility 2

Non CT Non CT Non CT Non CT

Facility Facility 1 Facility 2 Facility Facility 1 Facility 2 Facility Facility 1 Facility 2 Facility Facility 1 Facility 2

Eve of policy 100 100 200 100 100 200 100 100 200 100 100 200

Estimated change after policy 100 90 180 100 90 180 100 90 180 100 90 180

Estimated change in 

Emissions Gap after policy -10 -10 -10 -10

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CT Facilities CT Facilities CT Facilities CT Facilities

90% 90% 90% 90%

-10% -10% -10% -10%

CT Facilities CT Facilities CT Facilities CT Facilities

Four scenarios, each achieving a 10 percent reduction in total regulated-sector emissions but with different distributions of change across facilities

Scenario 1 Scenario 2 Scenario 3 Scenario 4
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We say this is version 1 because the actual pattern is a bit more complicated than we portray but Table 

3 helps get across the basic intuition: if you apply a common percentage, each scenario yields the same 

estimated improvement in the EJ gap while the actual variation between the scenarios is quite large. For 

analysts interested in what may have actually happened to the EJ gap, a common percentage estimate 

could be quite misleading. 

Table 4 offers a more complicated view that suggests even more potential issues with the HCM 

approach. Here, we simulate four cases and calculate the full post-policy trend (𝜅1
𝑝 + 𝜅2

𝑝) using a 

formula that makes use of the asinh values, which we then use to calculate the implied trend break. As 

before, in all cases, the total or global reduction is on the order of ten percentage points; note, however, 

that the greater the variation across facilities in response to cap and trade, the higher the HCM-style 

estimate of 𝜅2
𝑝 , mostly due to the way in which asinh changes are calculated. 

 

Table 4. Four Emissions Scenarios (version 2) 

Non CT Non CT Non CT Non CT

Facility Facility 1 Facility 2 Facility Facility 1 Facility 2 Facility Facility 1 Facility 2 Facility Facility 1 Facility 2

pre-policy 100 90 200 100 90 200 100 90 200 100 90 200

eve of policy 100 100 200 100 100 200 100 100 200 100 100 200

after policy takes effect 100 90 180 100 85 185 100 70 200 100 60 210

How the HCM equation 1 captures each scenario:*

HCM's kappa1

HCM's kappa2

kappa1 + kappa2

Measures of change in relative disparity, overall emissions, and emissions gap

Relative CT / Non-CT after 

policy

Change Total CT emissions 

after policy

Change in Emissions Gap 

after policy -10 0 30 50

With an estimated 10% global decline, what goes into the HCM air plume model, by scenario

Non CT Non CT Non CT Non CT

Facility Facility 1 Facility 2 Facility Facility 1 Facility 2 Facility Facility 1 Facility 2 Facility Facility 1 Facility 2

pre-policy 100 93 193 100 92 196 100 88 205 100 85 212

eve of policy 100 98 204 100 97 206 100 93 216 100 90 223

after policy takes effect 100 88 183 100 86 183 100 77 181 100 71 177

Estimated change in 

Emissions Gap after policy

Effect of Policy on the Emissions Gap between CT Facilities 1 and 2

Reality

HCM Finding

CT Facilities CT Facilities CT Facilities CT Facilities

Four scenarios, each achieving a 10 percent reduction in total regulated-sector emissions but with different distributions of change across facilities

Scenario 1 Scenario 2 Scenario 3 Scenario 4

0.05 0.05 0.05 0.05

-0.16 -0.17 -0.23 -0.28

-0.11 -0.12 -0.18 -0.23

90% 90% 90% 90%

-10% -10% -10% -10%

CT Facilities CT Facilities CT Facilities CT Facilities

-11 -12 -20 -28

Narrowing Static Widening Widening

Narrowing Narrowing More Narrowing Even More Narrowing Even More

* We assume in all cases that there is a ten percent reduction in CT emissions relative to the non-CT sector. Note that HCM's kappa2 (and kappa1 + kappa2) is larger in magnitude the more unbalanced 

the adjustment across facilities. If that percentage effect is then applied to estimates, this will create a bias toward finding closure of the emissions gap when it may have widened.  

 

In the bottom half of Table 4, we show the estimated declines from an HCM-style common percentage 

estimation. Note first that the initial estimated starting points for each of the C&T facilities is not the 

same as the “real” starting points; that is because the regression procedure means that each facility 

starting point includes the constant (which is the non-C&T starting point) and a fixed effect that is 

estimated over all three years. Now track through the estimated changes in the pollutant and note once 

again that HCM's model cannot distinguish between the balanced, across-the-board reduction of 

Scenario 1, which reduces the physical emissions gap between the facilities, and the lesser or greater 
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“hot-spotting” of Facility 2 in Scenarios 2, 3, and 4; indeed, because the greater the variation across 

facilities in response to cap and trade, the higher the HCM-style estimate of 𝜅2
𝑝 , we get a bigger 

estimated reduction in the emissions gap even as the emissions gap grows across the scenarios.  

HCM include an appendix to show that one cannot work from facilities only to capture the actual EJ gap 

since facilities can affect both DAC and non-DAC neighborhoods; it is better to focus on the receptor 

side. We note below that we concur that this is a better approach. Still, it would seem that if Facility 2 

has a plume that tends to affect more EJ communities than Facility 1, the common percentage modeling 

might be missing the impact on EJ communities. By design, cap-and-trade policy can generate 

environmental winners and losers, even if there is an average benefit to society. The HCM approach 

assumes that variation away. 

It is also useful to stress again that an assumed common percentage effect necessarily predicts larger 

reductions in mass where there is more pollution. Since we know that there is generally a preexisting 

pattern of environmental disparity – a point both we and HCM make in our analyses (Hernandez-Cortes 

and Meng 2023; Pastor et al. 2022) – this prediction combined with an initial racial disparity in the 

distribution of pollution is biased towards “finding” (or rather estimating) larger reductions for EJ 

communities.  

None of these considerations would be a big empirical issue if the variation in changes, and the sharp 

divergence of observed changes from the common-percentage model assumed and imposed by HCM 

was just a feature of our simple simulation and not a pattern in the data. To explore this, we focus on 

co-pollutants (since the GHG pattern is so problematic and the concerns are mostly about co-pollutants) 

and compare the predictions in HCM’s stage 1 model to predict the level of emissions (of any pollutant) 

for each facility and year, and then compare predicted changes for facilities from 2012, the eve of policy 

implementation, to year t, that is, 𝑌𝑖�̂� − 𝑌𝑖,2012̂ to actual changes for facilities from 2012 to year t (Y(i,t)– 

Y(i,2012)).  In generating these predicted values, we utilize the C&T tags that HCM use; as we have noted, 

these may be problematic but here we are comparing what they predict to what actually occurred. 

First, we consider the variation across the cap-and-trade facilities that appear in the HCM regression, 

i.e., with the size and sector limitations, in the changes in emissions over time.  Figure 6 shows three 

time series for each pollutant.  We focus on the four co-pollutants, PM2.5, PM10, NOx, and SOx, rather 

than GHG because co-pollutants are relevant for the analysis of inter-facility variability and 

environmental justice, and because of the earlier indicated issues with the modeling of GHG when one 

does not account for the reporting shift that occurred in 2011.  
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Figure 6 

 

 

The first series is the share of cap-and-trade facilities whose actual change from 2012 to the indicated 

year exceeded the predicted change.  Predictions based on a regression model of course will of course 

have error, but a good model will generate predictions that are dispersed both above and below the 

predicted value. That is we would expect roughly 50% of facilities to have actual changes above the 

predicted change (and 50% below).  In fact, for all pollutants for almost all years, the percent of facilities 

that have actual changes above the predicted change is at least 60%, rising to 70% for NOx in 2014–2016 

and around 80% for SOx for 2015–2017.  The high share of facilities with actual changes that exceeds 

predicted changes suggests either outright bias in the estimation equation or, at best, a highly uneven 

distribution of values, which could, for example, reflect a small number of facilities with large emission 

declines (or even closures) offsetting wide incidence of increasing or stable emissions,  

The second line in the time series plot reports the percent of facilities with actual changes greater than 

zero over the period considered.  This share is between 40% and 50% for PM2.5, PM10, and NOx and is 

somewhat lower for SOx, for which it finishes the period at roughly 40%.  Finally, the third time series 

reports the share of facilities with increases of at least 25% increase in emissions. In most years, more 

than 20% of facilities had experienced increases relative to 2012 of more than 25%.  Thus, nearly half of 
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facilities actually experience an increase in emissions and 20% of facilities experience substantial 

increases in emissions. These are non-trivial deviations from the common-percentage predicted 

reduction in emissions HDM finds, which indicates that the reality may more closely resemble scenarios 

in which changes in emissions vary sharply across facilities (scenarios 3 and 4 in Table 3) rather than one 

in which all facilities experience across the board common-percentage changes.  

Next, we present in Figure 7 a scatterplot for PM2.5  in which the actual changes between 2012 and 

2017 for each facility is plotted against the change predicted by the HCM common-percentage model for 

that facility. We start with PM2.5 here because it is the pattern in which the HCM modeling gets closest 

to the pattern and we wish to offer their best case. Although we focus on the change from 2012 to 2017, 

the results are similar for changes from 2012 to any year after the implementation of the policy, which is 

not surprising given the evidence on variation presented in Figure 6.  

Figure 7 

 

 

In the scatterplot, the 45° line indicates what would be the case if equation 1 perfectly predicted facility-

level quantity changes.  For example, a facility predicted to decrease emissions of PM2.5 by 2 tons that 

in fact decreased emissions of PM2.5 by 2 tons would appear on the 45° line.  If this facility reduced 

PM2.5 emissions by only 1 ton, the point for the facility would appear above the 45° line, and if it 
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reduced PM2.5 emissions by more than 1 ton, the point for the facility would appear below the 45° line.  

The left-hand panel shows the full scatterplot of actual changes versus predicted changes for the 90 cap-

and-trade facilities in the HCM regression sample that had data for 2012 and 2017; because the spread 

of actual changes is very high, panel (b) shows a close-up of observations closest to the origin (deleting 9 

outliers 

Three points are clear. First, the spread of actual  changes is very large relative to the spread of 

predicted changes from the common-percentage model.  Second, the points are generally above the 45° 

line, supporting the implication of substantial bias in the HCM model that was suggested by the 

asymmetry between over-prediction and under-prediction in Figure 6.  Third the actual change is not 

closely or even broadly predicted by the predicted change even in direction, let alone magnitude.  The 

bivariate regression lines from a regression of the actual change on the predicted change have a slope 

that diverges from the 45° line that would be generated by an accurate but merely imprecise model.  

The EJ Gap results that emerge from stage 2 of the HMC analysis depend crucially on the facility-level 

emissions changes that go from stage 1 into the stage 2 model, and HCM have entered values from the 

45° line into stage 2. These values seem to bear little relation to the actual performance of cap-and-

trade facilities after cap-and-trade went into effect. It is crucial to emphasize that this is not merely a 

case of statistical variation around a fundamentally accurate trend. The variation is wide and we suggest 

that it is the variation that is crucial to capture not the average effect.   

Below, we show the contrast in the actual values for the change in 2012-2017 vs. the predicted values 

for PM2.5 for 2012-2017 that would emerge using the HCM C&T tags, the HCM regression method, and 

the HCM subsample for GHG and the three other co-pollutants in a series of four figures. For GHG, the 

values for change has fewer outliers; for the other co-pollutants, there are outliers and so we take the 

approach as in the consideration of PM2.5 and also offer a close-up view of the data.  
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Figure 8. Predicted and Actual Change, Total GHG 
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Figure 9. Predicted and Actual Change, PM10 
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Figure 10. Predicted and Actual Change, NOX 
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Figure 11. Predicted and Actual Change, SOX 

 

One thing that is quickly noticeable – and might have been surmised from the extensive discussion 

above – is just how poor the fit is for GHGs. We can see, however, that PM2.5 comes closest to being 

considered reasonably estimated, and the fit seems quite unimpressive for the other co-pollutants 

depicted in this appendix. 

Another Approach to Understanding Relative Performance 

While HCM rightly object to a before-and-after approach that does not include a control group 

(Hernandez-Cortes and Meng 2022), one can conduct an event-study analysis of the difference since 

2012 between the change in mean inverse hyperbolic sine of cap-and-trade facility emissions and the 

change in mean inverse hyperbolic sine of non-covered facility emissions.  An event study analysis 

showing facility changes relative to 2012, the eve of policy, requires the availability of data for 2012 and 

one other year to contribute to identification, a minimal inclusion criterion to identify policy-relevant 

coefficients from within-facility changes. We focus on co-pollutants because of serious issues with the 

estimation of the GHG patterns detailed above.  

Figure 12. Event Study Analysis for the HCM Restricted Sample 
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Figure 12 focuses on the HCM sample that is restricted by size and sector to approximately 5% of GHG 

emissions, but we correct the Cap-and-Trade designations, as we do in Column 2 of our regression re-

analysis in Table 1. The right-hand panel shows what the HCM regression would have predicted for each 

co-pollutant; naturally there is no variation but simply a steady trend (recall that by focusing on the 

pattern relative to the control group, we are stripping away the year effects that showed up, for 

example, in Figure 4 on GHGs). The left-hand panel shows the pattern from the actual data with the gray 

bands present a 95% confidence interval around the point estimate. In no year does the event history 

analysis find a statistically significant effect of cap-and-trade, either positive or negative, in terms of the 

gap in growth between C&T and non-covered facilities in the years after the policy goes into effect.  This 

corroborates column 2 of our regression re-analysis and contradicts the HCM reported finding for 

equation 1. 

We can also see that event study analysis of the years before 2012 suggests a pre-policy upward trend 

difference for PM10 and PM2.5. While this might be heartening for the HCM regression, it is important 

to note that there was a change in reporting standards specific to PM10 and PM2.5 starting in the year 

2011 that CARB warns “caused an increase in PM, PM10, and PM2.5 reported emissions” (See the 

Caveats documents at: https://ww3.arb.ca.gov/carbapps/pollution-map/ ). While this might be captured 

by shared year effects, an examination of the data in the HCM subsample suggests that the impact may 
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have differed by whether a facility was cap-and-trade or not, making the upward relative pre-policy 

trend less reliable than the relatively flat trends shown for NOX and SOX (Pastor et al. 2022:38). 

We can also use the event study approach to examine the impact of HCM’s subsample which eliminates 

facilities accounting for 95% of emissions in search of best comparison groups. One way to do that, akin 

to the fifth column of Table 1, is to compare the HCM estimate from their subsample to the event 

pattern for the full universe of cap-and-trade facilities and non-covered facilities.  

Figure 13. Event Study for the Full Dataset 

 

As in the fifth regression in Table 1, when we include the full set of polluting facilities in the event study, 

we find less indication of pre-policy trend differences. Furthermore, the post-policy trend difference 

indicates that emissions increased in the cap-and-trade sector relative to the non-covered sector, 

although the differences are for the most part not statistically significant.  

A final exercise involves looking at whether there is a distinct pattern for facilities that tend to 

disproportionately impact DACs. HCM are right to insist in an appendix that their two-stage approach –

first estimate the impact of cap-and-trade, then run those estimates through an air model – may have 

advantages over a more common approach of ascribing demographic information to the facility (either 

through proximity analysis or through aggregating from the neighborhoods affected by the air plume). 

However, a careful reading of that appendix suggests that a facility-based approach points in a different 
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direction than a neighborhood approach in the circumstance in which the EJ gap is negative – whiter and 

wealthier communities are more polluted than low-income communities of color. In that case, a slight 

relative increase from facilities affecting the latter communities can be overwhelmed by a sizeable 

increase affecting all communities – in which case the EJ gap becomes even more biased against 

advantaged communities.  

That is a possibility, of course, and one should be open to not finding a pre-existing pattern of uneven 

exposure related to race and income. Still, both HCM and we (and nearly all observers) agree that the 

DACs face more initial exposure from facilities. While it remains better to take a two-step approach, 

with this data, a source and receptor analysis should generally point in the same direction. In Figure 14, 

we compare the pattern for the full sample for facilities that have a DAC within 5 miles as compared to 

those that do not for the four co-pollutants. We did other comparisons for the HCM size- and sector-

constrained samples and for different buffer distances. The bottom line is that there is no convincing 

evidence of relative improvement for the DAC-impacting facilities. 

Figure 14. Event Study Comparing DAC and non-DAC Facilities 
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A Brief Recap 

In the main body of this paper, we noted a series of analytic and data issues regarding whether a 

common percentage approach addresses EJ concerns, whether the facilities that HCM use in their 

analysis are correctly coded as to cap-and-trade status, whether the imbalance in the sample – 

particularly the obvious bunching of entries into the database and the fact that the majority of facilities 

in their regression subsample lack observations before and after policy implementation – can lead to 

shifting results, and whether one can correct for the imbalance by linking in the original CEIDARS data. 

We also suggested that it is not clear that the HCM results are robust across the whole sample.  

This appendix highlights how the coefficient estimates and the predicted values from the HCM 

specification for GHG might be distorted by a reporting shift that CARB warns researchers to consider. 

We also discussed how facility closures unrelated to the cap-and-trade policy can impact the results and 

have a larger effect on estimates of the trend break for the C&T facilities that then potential overstates 

the post-implementation impact of the policy. We also explored how the fit between the HCM-predicted 

changes in pollutants between 2012-2017 do not seem to dovetail well with the actual pattern.  

Finally, we showed how the HCM-predicted estimates vary from the results obtained from such an event 

study approach that does include a control group and uses the verified C&T tags from CARB/OEHHA, 

showing divergences that are particularly large for the full sample. We concur that air modeling is a 

potential step forward for the analysis of EJ issues but this second stage depends critically on the 

estimates that emerge from a first stage. The database that is used to estimate the changes in predicted 

pollutants is not large and it is worth the time to explore the sensitivity of results to better specifying 

and resolving these data issues, as well as considering other analytical approaches.  
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