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ABSTRACT: The relationship between low socioeconomic status and higher levels of 
morbidity and mortality has been well-established in the literature. Researchers, however, 
rarely test the link between health improvements and social programs or economic 
policies designed to alleviate poverty. In this paper, we examine the health effects of the 
Earned Income Tax Credit (EITC), a broad-based income support program that operates 
at the federal, state, and local level. Specifically, we examine the health impact of 
expanding New York State and New York City’s EITC benefits on low-income 
neighborhoods between 1997 and 2010. We estimate that the 15-percentage-point 
increase in the state and local EITC rates reduced the low birth weight rate in New York 
City’s poor neighborhoods by 0.45 percentage points. This level of impact is 
substantial—from 1997 to 2010 low birth weight rates in these neighborhoods only 
fluctuated between 9.0 percent and 9.8 percent. Our estimates also suggest that EITC’s 
impact on low-income neighborhoods is stronger than that experienced by the average 
EITC-recipient household. Aside from this study, we are aware of no other 
neighborhood-level analysis of EITC’s impact on health. This evidence of health benefits 
associated with the EITC program should encourage policymakers to integrate the use of 
social and economic policies, such as the EITC, in their public health interventions.   
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1. INTRODUCTION  
 
 A well-established literature exists describing the relationship between low 
socioeconomic status and higher levels of morbidity and mortality (Adler and Rehkopf, 
2008; Lantz et al., 1998; Pappas et al., 1993). Center for Disease Control Director 
Thomas Frieden highlights the significance of this relationship in his health impact 
pyramid—a visual depiction of how public health interventions vary in their impact 
(Frieden, 2010). Frieden puts public health interventions that affect socioeconomic 
factors at its foundation due to their ability to have “the greatest population impact.” 
Despite this, researchers have rarely tested the link between health improvements and 
social programs or economic policies designed to alleviate poverty or otherwise improve 
economic well-being for large segments of the population (Bhatia, 2014; Rigby, 2013. 
Connor et al. 1999; Bos et al. 1999; Auspos et al., 2000). Consequently, policy analysts 
cannot appropriately gauge this potentially valuable feature of anti-poverty programs.  

 
Since the push to reform welfare, embodied in the Personal Responsibility and Work 
Opportunity Reconciliation Act (PWRORA) of 1996, states have increasingly 
experimented with features of their social assistance programs. We now have a solid set 
of time-series and panel data that we can use to analyze the health impacts of these 
various policy configurations. Such analyses will enable policy makers to make more 
optimal decisions about these types of re-distributional programs. 

 
In this paper, we examine the health effects of one of the federal government’s largest 
anti-poverty programs, the Earned Income Tax Credit (EITC). The EITC is a refundable 
tax credit to lower-income families and serves as a broad-based income support program. 
Among means-tested programs, federal spending on the EITC is second only to 
Supplemental Nutrition Assistance Program (SNAP, formerly known as food stamps), 
and only since the onset of the severe 2008-2009 recession.  
 
In 2013, more than 28 million households across the country received over $65 billion 
from the federal EITC,1 lifting 9.4 million persons, including 5.4 million children, above 



! 3!

the poverty line (Center on Budget and Policy Priorities, 2014). States and a few 
municipalities have in increasing numbers added their own credit, typically as a top-off of 
the federal credit with the same eligibility requirements. As of 2014, 28 states and 
municipalities have local credits ranging between 3.5 and 50.0 percent of the federal 
benefit.  

 
A growing body of research has begun to link these improved incomes resulting from 
EITC benefits and improved health outcomes. These health outcomes include children’s 
overall health status and prenatal measures such as low birth weight (Hoynes et al., 2015; 
Evans and Garthwaite, 2014; Baughman, 2012; Larrimore, 2011; Strully et al., 2010; 
Arno et al., 2009). This study builds on this literature by examining how changes in New 
York State and New York City’s EITC program affected health outcomes in the city’s 
low income neighborhoods between 1997 and 2010. By 1997, New York State had 
adopted a 20 percent state-level EITC credit. This credit then increased incrementally to 
30 percent by 2003. New York City then added a local EITC of five percent in 2004. 
Therefore, from 1997 to 2010, the combined state and local EITC benefits for low-
income workers in New York City rose by more than 50 percent.2 
 
This study also adds a new dimension to this research by examining the EITC’s health 
impact at the neighborhood level. We expect to detect health effects from EITC benefits 
for poor communities that are distinctive from what we can observe at the individual or 
household level. This is because EITC dollars flow into high poverty areas in a 
concentrated way. As a result, the EITC can expect to have a magnified impact, not only 
on EITC recipient households but also EITC non-recipient households living in the same 
neighborhoods. A neighborhood-level analysis should more fully capture the EITC’s 
impact on health than an individual-level analysis. Ours is the only study that we are 
aware of that measures neighborhood-level effects of the EITC on health outcomes. 
 
We find that New York’s EITC benefits lead to measurable health improvements among 
low-income children of New York City. For an EITC rate increase from 20 percent to 35 
percent, low birth weight rates in the City’s low-income neighborhoods fall by 0.45 
percentage points. An improvement of this size is substantial when we consider that low 
birth weight rates have only fluctuated between 9.0 percent and 9.8 percent in these 
neighborhoods over the years of this study.  
 
The size of this estimated health effect suggests that the EITC’s health benefits are 
amplified in high-poverty neighborhoods. The magnitudes of our estimates, from our 
preferred specifications, are about 50 percent larger than the only comparable estimates 
available to-date of how EITC benefits impact low birth weight rates among EITC 
recipients (proxied by single mothers with a high school degree or less). In their 2012 
paper, Hoynes, Miller and Simon estimate that a $1,000 (in 2009$) increase in EITC 
dollars received by these single mothers, i.e., a $1,000 “treatment on treated,” would 
reduce low birth weight rates by between 7 and 11 percent.3 We estimate that an average 
$1,000 treatment on the households in New York City’s poor neighborhoods would result 
in a 13 to 15 percent reduction in low birth weight rates in those neighborhoods. The 
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midpoint between our estimates is roughly 50 percent larger than the midpoint between 
Hoynes et al.’s estimates. 
 
The paper is organized as follows: Section 2 situates our study within the existing 
research. Section 3 provides details on our data and empirical approach. Section 4 
presents our results, including robustness tests. Section 5 discusses the implications of 
our results. Section 6 concludes.  
 
2. Related Literature 
 
2.1 Evidence of EITC’s Impact on Health Outcomes 
 

A limited number of studies have directly examined the link between the EITC 
and health outcomes. These studies predominantly use a difference-in-difference strategy 
around policy parameter changes to identify its impact on the health outcomes of 
individuals most likely to receive EITC benefits (e.g. single mothers with a high school 
degree or less). 
 
Two studies focus on the large federal increases that occurred during the mid-1990s, 
embodied in Omnibus Budget Reconciliation Act of 1993 (OBRA93). In particular, these 
analyses take advantage of the fact that families with two or more children received a 
much larger boost in EITC benefits than other family types (i.e. families with no children 
or families with only one child) and try to link changes in health to these differently-sized 
EITC benefit increases.  

 
Evans and Garthwaite (2014) find a link between EITC benefits and improved self-
reported mental and overall health and biomarkers of physical and mental stress among 
mothers with a high school degree or less. Their findings are consistent with past research 
that indicates that low socioeconomic status affect health through stress or other related 
physiological conditions (Seeman et al., 2008; Kubzansky et al., 1999).  

 
Hoynes, Miller and Simon (2015) find that EITC benefits improve the birth weights of 
newborns to single mothers with a high school degree or less. They also consider the 
channels by which EITC benefits may improve low birth weight rates. They find some 
evidence that increased EITC benefits raise the rate of prenatal care and reduce maternal 
smoking, but has no impact on access to health insurance.  

 
Two other studies examine the health impact of state-level supplemental EITC programs. 
Nearly all state-level EITC programs “top-off” federal EITC benefits. State programs 
typically use the same eligibility requirements as the federal program and set the state 
benefits equal to a percent of the federal benefit. Strully et al. (2010) examine state 
programs that operated between1980 and 2002—up to 15 by 2002—and find that the 
presence of state EITC programs produces higher average birth weights among single 
mothers with a high school degree or less. They propose that this outcome results from 
the ability of small, short-term, income increases to boost expectant mothers’ nutritional 
intake, mitigating prenatal poverty.  
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Baughman and Duchovny (2010) analyze the health impacts of state programs on 
children’s health between 1992 and 2006, when up to 20 states had adopted their own 
supplemental programs. They found a measurable impact on one of the four health 
outcomes they examined: parents’ self-reported health status of older children (6-14 years 
old). They conclude these health improvements result from higher rates of maternal 
employment and the associated higher earnings.  
 
2.2 Potential Neighborhood Effects: The Role of Concentrated Poverty 
 

A number of poverty studies have found that those living in areas of concentrated 
poverty experience more severe, negative effects from poverty than do poor households 
living in areas that have an average level of poverty.4  

 
During 2006-2010, half of the country’s poor lived in what the U.S. Census Bureau 
defines as “Areas of Poverty”—neighborhoods with a poverty rate of at least 20 percent. 
The other half lived in more mixed income neighborhoods: 31 percent in areas with a 
poverty rate of less than 14 percent and 19 percent in areas with a poverty rate between 
14 and 20 percent (Bishaw, 2011).  

 
The Brookings Institute’s Concentrated Poverty research summarizes the unique features 
of living in poor neighborhoods:  

 
Areas of concentrated poverty inflict greater negative consequences on the 
members of those communities above and beyond the challenges associated with 
individual poverty…They [areas of concentrated poverty] contribute to higher 
crime rates and negative health outcomes…the stress and marginalization of 
poverty contribute to the poor physical and mental health outcomes, such as 
higher incidences of asthma, depression, diabetes, and heart ailments among 
residents of high-poverty communities (Kneebone and Berube, 2008, p. 3). 

 
This feature of neighborhood-level measures of poverty has two potential implications 
for how EITC benefits—or any income subsidy program aimed to mitigate poverty—
impact health outcomes.  
 
First, EITC benefits may improve the health of poor households residing in poor 
neighborhoods more than poor households residing in more mixed income 
neighborhoods. The positive relationship between income and health appears to be 
nonlinear—health improves significantly with movements up the income ladder from low 
to average levels, with increasingly diminishing returns to health from gains at high 
incomes (Robert and House, 2000). In other words, the social gradient between health 
and income is steepest for the lowest income levels. Poor households located in areas of 
concentrated poverty may be considered to occupy the very lowest rung of the income 
ladder, and therefore may experience a greater positive health impact from an income 
boost than poor households more generally. This spatial dimension of poverty however 
has not been distinguished in past studies of how the EITC impacts health.   
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Second, in poor neighborhoods, the positive affect of EITC benefits on health outcomes 
could spillover to non-recipient households as the EITC income subsidies reduce the 
neighborhood’s overall level of poverty. This is simply the corollary of the well-
established finding, described above, that a high neighborhood-level poverty rate has a 
negative impact on individual households that is independent of the individual 
household’s economic status.5 Examining the neighborhood-level impact of EITC income 
subsidies on health outcomes may capture these spillover effects.  
 
2.3 Potential Neighborhood Effects: EITC’s Multiplier Effect 
 

Due to the geographic clustering of poor households, the EITC effectively 
provides large cash injections into circumscribed areas. As a result, EITC dollars could 
potentially boost consumer spending in a local community that supports a higher level of 
local economic activity. 6 This increased economic activity, in turn, can generate greater 
income for other households in the community, “multiplying” the economic impact of 
each EITC dollar. In this way, the economic boost from the EITC income subsidies can 
spillover to their neighbors. A few studies have attempted to measure the economic 
benefits of the EITC program that extend beyond recipient households to the local 
community more broadly.  
 
Estimates of this multiplier effect range widely. According to the various studies, every 
$1 increase in consumption directly supported by the EITC generates $1.44, $1.58, and 
$1.07 worth of economic activity in Baltimore, Maryland; San Antonio, Texas, and 
Nashville, Tennessee, respectively (Jacob France Institute, 2004; Texas Perspective, 
2003; Haskell, 2006). If EITC benefits raise household incomes in a local economy this 
way, then we can expect that the overall impact on health outcomes will be larger than 
what we observe among EITC-recipient households alone. Therefore, the overall impact 
of the EITC benefits may be larger than what researchers have observed thus far by 
looking only at the health outcomes of recipient households. 
 
3. Background, data and methods 
 
3.1 The Earned Income Tax Credit 
 
EITC benefits are determined primarily by two factors: the number of dependent children 
in the family and the total level of earnings from all working members in the family. As 
of 2014, the number of dependent children places households on one of four benefit 
schedules: those with no children; those with one child and; those with two children, and 
those with three or more children.7 Households with no children get a maximum credit of 
7.65 percent of earnings whereas households with 3 or more children get the most 
generous EITC benefit equal to 45 percent of earnings. This benefit structure directs the 
majority of the subsidies to households with young children.   

 
On each schedule, the EITC benefit initially rises at a fixed rate along with earnings (the 
“phase-in” range) before hitting a maximum where the benefit stays constant as earnings 
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increase (the “plateau” range). As earnings go beyond the plateau range, the benefit 
decreases at a fixed rate until the total benefit is zero (the “phase-out” range). Owing to 
the refundable nature of the credit, even if workers have no federal income tax liability, 
as is true of most families below the poverty threshold, they can still receive the full 
value of the credit; thus, it effectively serves as a wage subsidy. 
 
In 2014, for a single parent with three or more qualifying children, the phase-in range 
extends up to $13,650. Therefore, as a household’s earnings move from 0 to $13,650, the 
EITC benefit rises from 0 to the maximum federal EITC credit of $6,143 (45 percent of 
$13,650). Once one’s earnings exceed $13,650, the EITC credit remains at this maximum 
amount of $6,143 until the beginning of the phase-out range. When a household’s 
earnings reach $17,830, EITC credits begin to fall as earnings rise above this amount. 
The EITC is deducted at a rate of about 21 percent. That is, 21 percent of every dollar 
earned above $17,830 is subtracted from the maximum EITC credit of $6,143.   When 
one’s earnings reach $46,997, the amount is equal to zero. This structure of EITC 
credits—with the phase-in, plateau, and phase-out ranges—means that the benefits are 
largest for those earning roughly 25 percent below the federal poverty line.8,9 
 
3.2 New York’s State and Local EITC Supplements 
 

Over the last two decades, state and local governments have enacted a series of 
EITC reforms. In 1990, only five states had state-specific EITC policies. By 2014, 24 
states and Washington DC have enacted EITC programs. New York’s state EITC rate has 
ticked up to among the highest, starting at 20 percent in 1994 and reaching 30 percent 
where it remains in 2014. Two municipalities have also adopted supplementary EITC 
programs. These include: New York City, which adopted its local 5 percent local EITC 
program in 2004 and Montgomery County, Maryland, which enacted its program in 
1999, with a county credit equal to the state’s refundable credit.10  

 
Most state and local EITC programs usually provide credit equal to a simple percentage 
match of the federal benefit level. For example, a New York City three-child household 
eligible for the 2014 maximum of $6,143 federal EITC described above would also be 
eligible for a $1,843 New York State EITC (30 percent x $6,143) and a $307 New York 
City EITC (5 percent x $6,143).  

 
3.3 Empirical Strategy 
 

We use a basic difference-in-difference empirical strategy to identify the impact 
of the EITC on the health outcomes of neighborhoods. We use panel data with annual 
observations of about 90 low- and middle- income ZIP codes that proxy as New York 
City (NYC) neighborhoods. Our treatment group includes NYC neighborhoods that have 
a high concentration of low-income households (more on this below) over the period of 
our study, 1997-2010. Our control group includes NYC moderate-income neighborhoods 
over the same period. Each set of neighborhoods is fixed over time. The local and state 
EITC benefits constitute the “treatment” and credit rate changes over time provide 
variations in the treatment amount. Therefore the first “difference” is the change in health 
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outcome observed among poor neighborhoods over time, as EITC rates increase. The 
second “difference” is the change in these health outcomes observed among poor 
neighborhoods net of any change observed among moderate-income neighborhoods 
occurring at the same time.  

 
In other words, we identify the health effect of EITC benefits as the difference in health 
outcome trends between the control and treatment group that correlates with changes in 
the local EITC rate. The local EITC rate equals the New York state plus city EITC 
rates.11 Note that we use the terms neighborhoods and ZIP codes interchangeably here.12  
 
As noted above, our study takes advantage of recent changes in New York City’s local 
EITC rates: increasing from 20 percent to 35 percent of the federal benefit over the 
period of our study (see Table 1).13  
 
TABLE 1 BELONGS HERE 
 
Our basic model parameterizes the EITC affect, rather than using a simple indicator 
(before/after) measure. By parameterizing the EITC effect, we can use information from 
the full range of EITC credit rates implemented in New York State and New York City 
between 1997 and 2010.14 We also add controls to better account for variations in health 
outcomes over time and across neighborhoods unrelated to EITC benefits, particularly 
local economic trends and neighborhood demographic differences:   
 
Health outcomezt = a + B1 (state and local EITC rate)t-1 + B2 (low-income 
neighborhood)z + B3 (state and local EITC rate)t-1 x (low-income neighborhood)z + B4 (% 
HS Deg or Less)z + B5 (% African American)z + B6 (% Latino)z + B7 (NYC 
unemployment rate)t + B8 (NYC minimum wage rate)t + B9 (County indicators)z + B10 
(Year 2001)t  + Other controls for local economic trends + ezt 
 
where the subscripts refer to ZIP code (z) and year (t). The interaction term between the 
EITC rate and the EITC-treated neighborhood indicator is our variable of interest. The 
coefficient B3 captures changes in the health of poor communities with increasing 
amounts of EITC benefits while controlling for unrelated trends in health outcomes, as 
measured by middle-income communities that are relatively unaffected by the EITC 
program. In other words, we identify the EITC impact by the annual, ZIP code-level 
variations in health outcomes. Note that we lag our EITC rate variable by one year. This 
is because most households receive their EITC in a lump sum when they receive their tax 
refund, the amount of which is determined by the EITC rate of the previous year.15  
 
Racially and ethnically segregated neighborhoods tend to have worse health outcomes, 
even while looking at neighborhoods that share similar economic features. Therefore we 
include demographic measures (% High school degree or less, % African American, % 
Latino) to control for fixed differences in health outcomes across neighborhoods.  
 
We also include county-level indicators that may capture any spatial heterogeneity 
specific to the New York City boroughs. The counties are (with the corresponding 
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borough in parens): New York County (Manhattan), Kings County (Brooklyn), Bronx 
County (The Bronx), Richmond County (Staten Island), and Queens County (Queens). 
 
The monotonic increase of New York’s local EITC rate poses a difficult challenge for 
this statistical analysis. Since many other economic trends taking place at the same time 
also rise (or fall) over time in a monotonic way (e.g. price levels, worker productivity, 
overall economic output), it can be difficult to differentiate between changes occurring as 
a result of EITC rate increases as opposed to other trends. Therefore, we implement 
several strategies for controlling for such spurious trends.  
 
First, we exclude from our control group above-average income neighborhoods to 
construct a control group that is more economically similar to the treated group than all 
non-poor neighborhoods. By doing so, the control group will more likely difference out 
simultaneously occurring trends in health outcomes caused by economic factors affecting 
both groups but which are unrelated to EITC credit rate change.  
 
Second, we include two specific local economic trends, the City’s unemployment rate 
and effective minimum wage rate. Both factors directly impact households’ earnings and 
overall income, particularly among low- to middle- income households.  
 
Third, we include two different sets of control variables to account for, as much as 
possible, other local economic trends occurring within New York City, as well as within 
the five counties. These two sets include:  
 

1. A linear time trend 
2. County indicators interacted with a linear time trend 

 
Note that we do not include year indicator controls because our model contains several 
regressors—local EITC rate, unemployment rate, and minimum wage—that only vary by 
year and therefore are perfectly collinear with such controls. We do include a single 
indicator variable for the year 2001 to absorb some of the exogenous shock caused by the 
Sept. 11, 2001 terrorist attacks.   
 
Health outcomes. We chose two poverty-sensitive health outcome measures for children 
from the Agency for Health Care Policy, Research and Quality (AHRQ) Prevention 
Quality Indicators. These include low birth weight rate and pediatric asthma 
hospitalizations per 1,000.16  
 
Low birth weight rate, as a health predictor, has two significant advantages. First, low 
birth weight rate serves as a more global measure of health because past research has 
linked it to a wide range of longer-term affects, including future education (e.g., math test 
scores and high school completion) and economic outcomes (e.g., future earnings) 
(Hyson and Currie, 1999; Currie and Moretti, 2007; Black et al., 2007). Additionally, low 
birth weight rates are less prone to measurement error, allowing for more precise 
estimates. Finally, birth weights respond, in the short-term, to maternal diets, which EITC 
benefits can improve quickly (McGranahan and Schanzenbach, 2013). 

   



! 10!

Pediatric asthma hospitalizations have been strongly linked to household-level income, as 
well as, ZIP code-level average income. A multitude of factors have been shown to 
increase asthma hospitalization rates including: poor environmental conditions (e.g., air 
pollution, exposure to allergens indoors), improper diagnosis of asthma, inadequate 
management of asthma symptoms with medications, inconsistent prophylactic and 
maintenance therapy, and irregular access to a physician (Agency for Healthcare 
Research and Quality, 2001). For pediatric asthma hospitalizations specifically, past 
research also finds that comorbidities and genetic factors are important, along with 
environmental triggers. Less clear is the role of parental compliance with treatment 
strategies.  

 
Smeeding et al. (2000) found that families receiving EITC payments spend some of their 
refund to “make ends meet” (e.g., buy food and clothes, pay bills), and a larger share to 
invest in  “economic and social mobility” (e.g., better housing, car repairs or purchases, 
education). The “lump-sum” form of payment that families usually receive their EITC 
refunds likely influences this spending pattern. Both of these types of EITC spending can 
help address the wide range of factors that contribute to pediatric asthma hospitalizations 
such as providing reliable transportation to doctor’s visits, paying for house repairs to 
deal with allergens or even, moving to better housing, as well as, insuring a sufficient 
supply of asthma-related medications.  

 
We also include a measure of prenatal care as a potential predictor for improved birth 
outcomes, including birth weight. Past studies have found suggestive evidence that 
prenatal care may be a mechanism by which EITC benefits may improve low birth 
weights (e.g., Hoynes et al., 2015). This could result directly from having more income 
that can be spent on health care. A number of studies have demonstrated that the EITC 
induces greater employment levels among poor working families. (Schmeiser, 2012; 
Wicks-Lim and Pollin, 2012; Dahl and Schwabish, 2009; Eissa and Liebman, 1996; 
Meyer and Rosenbaum, 2001; Hotz and Scholz, 2010; Hoynes, 2009; Eissa and Hoynes, 
2006) Employment, in turn, may provide access to employer-provided health insurance, 
which can better enable women to use health care.  
 
3.4. Data and variable definitions 
 

3.4.1 Health outcomes 
 

Our data on low birth weight rates come from the New York State Department of 
Health Vital Statistics Program’s New York State County/ZIP Code Perinatal Data 
Profile.17 Each year of data is based on a three-year period to create ZIP code based 
perinatal data. Low birth weight is defined as: percent of live births, newborns weighing 
between 100-2499 grams (2499 grams = 5.5 lbs.).  

 
For our measure for prenatal care, we use the percent of live births with no or late (i.e., 
initiated in the 3rd trimester) prenatal care. These data also come from the same New 
York State Department of Health Vital Statistics Program’s New York State County/ZIP 
Code Perinatal Data Profile as the low birth weight data, and are also three-year averages.  
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Our prenatal care data clearly suffer from measurement errors. For example, 50 out of 88 
ZIP codes had a value of zero for this measure in 2009. This compares to only 1 or 2 ZIP 
codes having a value of 0 percent no or late prenatal care for all other years.  
Additionally, we observed dramatic spikes in the prenatal measure for only the years of 
1999 and 2008 and for two ZIP codes (11224 and 11235). 
 
To remedy these data quality issues we did the following. We simply drop ZIP codes 
11224 and 11235 and data for 2009.18 We replaced the values for 1999 and 2008 with an 
average of the data from the year immediately preceding and the year immediately 
following (for 2008, we used an average of 2007 and 2010). 

 
Our pediatric asthma health outcome measure is the number of hospital discharges with a 
principal diagnosis code of asthma among children 5-14 years old per 1,000. Infoshare 
supplied these data and are sourced from the Statewide Planning and Research 
Cooperative System (SPARCS) of the New York State Department of Health.19  
 
Finally, to reduce noise from these measures due to small sample sizes, we drop from our 
analysis of low birth weight and prenatal care observations from ZIP codes with very few 
live births (i.e., less than 30). This results in dropping less than 0.5 percent of our annual 
ZIP code observations. For our analysis of asthma hospitalization rates, we drop ZIP 
codes with very few youth (again, less than 30). This exclusion results in dropping 2.1 
percent of our annual ZIP code observations. 

 
3.4.2 Neighborhood definitions: Treatment and Control Groups 
 
Treatment Group. We use three different ways to identify low-income 

neighborhoods—our treatment group—that are particularly impacted by EITC benefit 
changes. For each definition, the treatment group includes those neighborhoods that fall 
into the highest quartile of a specific measure (for the real median income measure, the 
treatment group includes ZIP codes that fall into the lowest quartile), averaged over the 
entire 1997-2010 time period: 

 
1) EITC filers as % of All Tax Filers (Treatment group = at least 30%) 
2) Real EITC benefit per capita (Treatment group = at least $300 per capita, 2012$) 
3) Real Median income (Treatment group = Real median income falls below 

$43,000 in 2012 dollars) 
 
By using three different definitions for our treatment group, we can assess how sensitive 
our results are to any one particular definition.  
 
Our EITC benefit data come from the Brookings Institute’s Metropolitan Policy Program. 
Brookings receives ZIP code-level administrative data from the IRS on taxpayers, 
including detailed information about those who claimed the EITC, and offers the data at 
various levels of geography through an interactive on-line database (see: EITC 
Interactive at: 
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http://www.brookings.edu/~/media/Multimedia/Interactives/2014/eitc/UserGuideUpdate
TY12.pdf). 
 
To convert the EITC benefit amount published by Brookings into a per capita measure, 
we use the average population size from two points in time. These data are from U.S. 
Census Bureau’s 2000 Census and the 2006-2010 5-Year data set American Community 
Survey (ACS). The data from each year separately are highly correlated with each other 
and the average measure. 

 
For our income measure, we also average data from the same sources and points in time. 
These data are likewise highly correlated with each other and the average measure. See 
discussion on demographic variables below for more details about how we used Census 
data with ZIP code-level data.   

 
Control Group. Our control group consists of moderate-income ZIP codes that 

are less impacted by EITC benefit changes.20 Moderate income ZIP codes are defined as 
those ZIP codes not in our treated group and with an average real median income below 
$60,400. This income cutoff of $60,400 is the “average average income”: $60,500 is the 
50th percentile value, across ZIP codes, of real median incomes averaged over 1997-
2010.  

 
3.4.3 Demographic variables  
 
We add demographic data published by the U.S. Census Bureau. Note that the 

U.S. Census does not publish data by U.S. postal ZIP code. We constructed ZIP code 
level data for these demographic variables by aggregating the U.S. Census Bureau’s 
census tract-level data to ZIP codes that existed during January-March 2010 using the 
Housing and Urban Development (HUD) USPS ZIP Code Crosswalk Files. These data 
are available from the 2000 Census and for the 2006-2010 5-Year American Community 
Survey data. The HUD files also provide ratios of the number of residential addresses in 
each tract assigned to a specific ZIP code. We use these ratios (RES_RATIO) to weight 
the demographic characteristics of the residents in each tract that contributes to a ZIP 
code and use the weighted values to construct the demographic characteristic for each 
ZIP code.  

 
ZIP codes, constructed to make mail delivery more efficient, can vary somewhat over 
time with population shifts, whereas Census tracts do not. Therefore some variations over 
time in demographics of ZIP codes constructed this way inevitably introduce error. At the 
same time, the high level of correlation between the demographic characteristics of the 
ZIP codes at the two points in time in this analysis suggests that this error is limited (See 
Table 2). 

 
TABLE 2 BELONGS HERE 
 
Ideally, we would be able to measure the demographic variables annually but these data 
are unavailable. However, as noted in Table 2, these measures are highly correlated over 
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time and therefore basically behave as “fixed” characteristics (i.e., fixed over time). 
Given the high levels of correlation we treated these variables as fixed over time and used 
the average value from 1999 and 2006-2010.   
 

3.4.4 Economic trend variables 
 

The U.S. Department of Labor’s Bureau of Labor Statistics publishes the data for 
the economic trend variables including the New York City unemployment rate and the 
New York minimum wage rates.   

  
4. Results 
 
4.1.  Summary Statistics 
 

We begin by providing summary statistics to describe our different neighborhood 
groupings and how they relate to each other and the EITC policy changes.  
 
In Table 3 we present summary statistics of all the main variables in our analysis. Our 
three low-income neighborhood definitions largely group ZIP codes in similar ways. 
Compared to our middle income neighborhoods, our low income neighborhoods have 
noticeably higher proportions of African American (roughly 55 percent vs. 25 percent) 
and Latino residents (roughly 40 percent vs. 20 percent), and residents with less than a 
high school degree or less (roughly 65 percent versus 50 percent).  
 
Even within our low-income communities there exist distinct racial and ethnic 
neighborhoods. Among these neighborhoods, about a quarter have about 20 percent or 
less African American and 20 percent or less Latino residents. This contrasts with another 
quarter of low-income neighborhoods that have at least 60 percent African American 
residents and at least 65 percent Latino residents. The differences across low-income 
neighborhoods in terms of the percent with a high school degree is much less dramatic: 
the 25th and 75th percentiles for this measure are much closer: 60 percent and 70 percent, 
respectively. The range in median incomes across low-income neighborhoods also falls 
within a relatively limited range—between $30,000 and $40,000.  
 
The EITC receipt definition does a somewhat better job of narrowing our low-income 
neighborhoods—our treatment group—to those that receive larger injections of EITC 
dollars. For all three definitions, the control groups’ EITC participation rates are about 20 
percent and the treatment groups’ EITC participation rates are about 40 percent. The 
actual dollar receipt of EITC benefits, however, differs between the treatment and control 
groups most when we use the “Per capita EITC benefit” definition.  
 
Based on the “Per capita EITC benefit” definition, the difference in the actual dollar 
receipt of EITC benefits per capita between the treated and control neighborhoods exceed 
$200. When we use the EITC participation rate or low median income definitions to 
group our neighborhoods, the difference between the treated and control groups is 
somewhat less at about $150 to $160. 
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The figures at the bottom of Table 3 indicate the variation of health outcomes by 
neighborhood grouping. Evidence of the income/health gradient is apparent. For each of 
the three measures, low-income neighborhoods have worse health outcomes compared to 
middle income neighborhoods. The lower income neighborhoods have higher rates of 
low birth weights, higher rates of no/late prenatal care, and higher prevalence of pediatric 
asthma-related hospitalizations.  
 
TABLE 3 BELONGS HERE 
 
Finally, Figure 1 maps which neighborhoods belong to our low-income and middle-
income neighborhoods, as well as the neighborhoods we exclude from our analysis. We 
use the “Per Capita EITC benefit” definition for this map. As is clear from the figure, for 
the most part, our low-income neighborhoods cluster together. These low-income areas 
appear in four of the five New York City counties. The Bronx and Brooklyn counties 
have a larger share of low-income neighborhoods, whereas Staten Island County has 
none. Of the four counties that do have low-income neighborhoods, all also contain 
middle-income neighborhoods that serve as controls.  
 
FIGURE 1 BELONGS HERE 
 
We present in Table 4, summary statistics of EITC benefits at two points in time for our 
treatment and control groups separately. These figures illustrate how much the flow of 
EITC dollars has changed over the time period of our study. Specifically, we show how 
the average EITC per capita changed from 1997-99 to 2005-2007. Over this same time 
period, New York’s EITC increased from 20 percent to 35 percent. We chose these two 
points in time because they span the full range of changes in local EITC rates, coincide 
with business cycle peaks and precede the onset of the Great Recession. 
 
During this period, our low-income neighborhoods, defined by EITC per capita, 
experience the largest overall income gain of $126. These households’ gain relative to the 
households in the middle-income neighborhoods however is a smaller $105. Given that 
the average household includes 3 members, this represents a net household income gain 
of about $315 ($105 x 3). Moreover, when we take into account that about 40 percent of 
tax filers in this neighborhood file for EITC credits, this income gain per recipient 
household, amounts to about $788 ($315/0.40=$788). This is a meaningful, but modest, 
relative income gain equal to a two percent increase in the average real income in these 
neighborhoods.  
 
TABLE 4 BELONGS HERE 
 
4.2 Regressions Results 

 
We use two different regression methods to estimate our model for our two health 

outcomes with values bound between 0 and 1—proportion low birth weight and 
proportion no/late prenatal care. We use both a linear probability model (LPM) and a 
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generalized linear model (GLM) that uses the logit function to link the probability of the 
health outcome variable to a linear predictor function. This latter approach has the 
advantage of specifically limiting the predicted values between 0 and 1 to match the 
actual observed data. 

 
Note that estimating a linear probability model (LPM) with a dependent variable that has 
a bounded range can produce biased coefficients (Kennedy, 1998, p. 249). This is 
particularly true when estimating marginal effects for values near either the 0 or 1 limit. 
At the same time, LPMs frequently produce estimates similar to those using methods 
technically more suited to this type of data, and has the advantage of ease of 
interpretation. Therefore, we use both the LPM and GLM to produce our regression 
results. The LPM results provide an immediately straightforward way to interpret our 
results. We can then compare the LPM results to the more oblique GLM results.  
 
We take advantage of the fact that our data set is a panel (annual ZIP codes observations). 
With both the LPM and GLM, we estimate standard errors assuming heteroskedastic 
errors that are contemporaneously correlated across panels, and exhibit within-panel first-
order autocorrelation. Note that our third health outcome measure—pediatric asthma-
related hospitalizations per 1,000—is not bound between 0 and 1 and is not a proportion. 
Therefore, we do not estimate the regressions with this dependent variable using a 
generalized linear model.  
 
Table 5 presents our LPM (or just linear regression model in the case of the asthma-
related outcome) results. We show only the estimate and standard errors for the 
parameterized EITC “treatment” affect interacted with our low-income community 
indicator (Col. 1). Each entry in the table represents a different regression.  
 
For each health outcome, there are nine estimates. We use each of the three different 
definitions for our low-income neighborhoods discussed above and three different sets of 
controls. In the first column, the only control we include for local economic trends is the 
unemployment rate and the real value of the minimum wage. In the second column, we 
add a linear time trend to control for other local economic trends. The controls added to 
column 3 allow the linear time trend to vary by county. Each panel of Table 5 display 
results for one of our three health outcome measures. 

 
Panel A shows our results for the health outcome measure “percent low birth weight 
rate.” These estimates measure how much the low birth weight rate changes for low-
income neighborhoods given a change in the local EITC rate. These estimates are net of 
any changes in the low birth weight rate occurring in middle-income neighborhoods at 
the same time.  

 
The nine estimates for low birth weight rate are all negative, indicating that increases in 
EITC benefits are associated with reductions in low birth weight rates. The estimates 
range between about -0.02 and -0.03, indicating that a 10 percentage point increase in the 
local EITC rate typically results in a -0.2 to -0.3 percentage point decline in the low birth 
weight rate among low-income neighborhoods.  
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The estimates based on the per capita EITC definition and our median income definition 
for our low-income neighborhoods are sufficiently precise to draw some conclusions 
about the relationship between EITC benefits and low birth weight rates. This is true 
regardless of which controls we include.   

 
Panel B shows our results for the outcome measure “percent no or late prenatal care.” 
Similar to the results for the percent low birth weight rates, the nine estimates are all 
negative. Only one estimate out of nine is precise enough to rule out an estimate of zero. 
This result, however, is not robust to adding the time trend controls.  

 
Panel C shows our results for the outcome measure pediatric asthma-related 
hospitalizations per 1,000. As with the other health outcome measures, these estimates 
are consistently negative. About half of these estimates, however, are not precise enough 
to achieve statistical significance by conventional standards. At the same time, the 
statistically significant results appear with all three sets of controls when we define our 
low-income neighborhoods by their “average median income” and not by actual EITC 
receipt. This pattern may be due to the fact that the “average median income” definition 
is likely to be more susceptible to producing spurious results. Out of the three 
neighborhood definitions, the “average median income” definition is the only one that 
does not rely on a measure of actual EITC receipt. Moreover, adding controls for county-
specific time trends substantially reduces the magnitude of the estimated impact of the 
local EITC rate on pediatric asthma-related hospitalizations in low-income 
neighborhoods.  
 
TABLE 5 BELONGS HERE 
 
Table 6 presents analogous GLM results for the percentage low birth weight and percent 
late/no prenatal care dependent variables. In order to facilitate the interpretation of the 
GLM results, we present alongside the GLM coefficient and standard errors, the 
difference between the average marginal effect of the EITC rate for our low-income 
neighborhoods and our middle-income neighborhoods.21 This measure provides a 
comparable metric to the LPM coefficient on the local EITC rate interacted with the low-
income neighborhood indicator. 

 
The results remain largely the same for both health outcomes. For low birth weight rates, 
nearly all of the estimates are precise enough to rule out an estimate of zero effect at 
conventional levels. The magnitudes of the estimated average marginal effect of the 
EITC for low-income neighborhoods on low birth weight rates are somewhat larger 
compared to the LPM results, ranging between about 0.03 and 0.04.  As before, none of 
the estimates for the no/late prenatal care measure are precise enough to rule out an 
estimate of zero effect at conventional levels.  
 
Overall, taking into account all our results from Tables 5 and 6, we conclude that our 
regression estimates for our prenatal care and asthma outcomes are not robust to modest 
variations in model specification. Only our estimates for low birth weight rates are stable 
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across the specifications we have presented thus far. In the next section we will focus 
further robustness tests on our estimated negative relationship between the EITC and low 
birth weight rates. 
 
TABLE 6 BELONGS HERE 
 
4.3 Robustness tests 
 

4.2.1 Alternative controls for geographic heterogeneity 
 

In this section, we examine whether the relationship we observed between the 
EITC and low birth weight rates is robust to including a more fine-grained level of 
geographic controls to account for geographic heterogeneity. We can use ZIP code level, 
rather than County level indicators in our model.  
 
We do not interact our ZIP code indicators with a time-trend variable. ZIP code level 
indicators interacted with a time trend would absorb much of the variation in health 
outcomes by neighborhood that could be correlated with the EITC rate, including 
between low- and middle- income neighborhoods. This is because the correlation 
coefficient between the local EITC rate and a year trend variable is nearly perfect at 0.94 
and we are using annual ZIP code observations. Therefore, at most, we would want to 
control for spatially heterogeneous trends at the County level.  
 
Recall that for our empirical strategy, the differences in health trends between the two 
types of neighborhoods—neighborhoods that benefit substantially from the EITC 
program expansions and neighborhoods that benefit only modestly—are crucial for 
identifying the EITC affect. When we include county indicator variables interacted with a 
year trend variable, we can still identify the EITC affect on health by examining within-
County differences in trends between the two types of neighborhoods.  
 
In Table 7, we provide both LPM and GLM estimates, this time including ZIP code 
indicators with year indicators. We can see that including controls at the zip code level do 
not meaningfully change the results.  
 
TABLE 7 BELONGS HERE 
 

4.2.2: Testing Whether Regional Trends in Low Birth Weight Rate Explain Low 
Birth Weight Rates in New York’s Poor Neighborhoods 

 
In this section we probe further the question of whether the negative relationship 

we observe between the low birth weight rates within NYC’s low-income neighborhoods 
and the local EITC rate is spurious.  
 
It is possible, for example, that there is a secular decline in low birth weight rates among 
low-income households in the region specifically—and not among nearby middle-income 
neighborhoods—that is unrelated to the EITC.  
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Unfortunately, we are unable to identify any way to divide low-income neighborhoods 
within NYC further to form a new set of treatment and control groups that we could 
analyze. This is because EITC benefits are high for any subset of NYC’s low-income 
neighborhoods. Therefore, we cannot directly control for trends that are specific to low-
income neighborhoods—and different from middle-income neighborhoods—within 
NYC.  
 
Two obvious alternative tests exist. First, we could examine trends in low birth weight 
rates prior to our study period so that, in effect, low-income neighborhoods act as their 
own control group. For low-income neighborhoods to serve as their own control group 
during this pre-study period, however, they must not be exposed to any “treatment” (i.e., 
increase in EITC benefits). Federal EITC expansions during the years immediately 
preceding our study period preclude this test.  
 
The second approach is to look just outside of New York for a group that is similarly 
low-income, but unexposed to New York’s City and State EITC expansions. After 
identifying such a group, we can include a measure of the low birth weight rate for such a 
group as an additional control in our basic model. This alternative group should be 
similar to our low-income NYC neighborhoods along the dimensions of income level, 
average low birth weight rate, and geographic location, but would actually not experience 
any increase in EITC benefits (i.e., would be “untreated”).22 
 
If the trends in low birth weight rates of the alternative group explain well the trends in 
NYC, this would suggest that the decline in low birth weight rates among NYC’s low-
income neighborhoods from 1997 to 2010 resulted from some factor other than New 
York’s EITC programs. We consider the two states that flank the NYC area—New Jersey 
and Connecticut—to find an alternative low-income group for an additional control.  
 
We rule out New Jersey because it expanded its EITC program during the study period. 
Beginning in 2000, New Jersey adopted a 10 percent state EITC that subsequently 
increased in steps each year through 2004 to 20 percent.  
 
To measure low birth weight rate trends for communities in Connecticut similar to our 
low-income NYC neighborhoods, we use Black and Latino households statewide. 
Ideally, we would have ZIP code level data and we could construct trends based on low-
income communities in Connecticut defined in a similar way as our NYC neighborhoods. 
However, we do not have access to ZIP code level data for Connecticut, and no 
metropolitan areas in Connecticut resemble our NYC neighborhoods in terms of their 
average low birth weight rates or income levels. Based on data over two decades—from 
1990 to 2010—we find that on both dimensions, Black and Latino Connecticut families 
most closely approximate these characteristics of our low-income NYC neighborhoods.  
 
The average low birth weight rate between 1990 and 2010 for Connecticut’s Black and 
Latino families is 10.5% versus 9.7% for our NYC low-income neighborhoods. 23 With 
regard to income, in 2009, the median incomes for African American and Latino 
Connecticut households are  $41,800 and $39,500, respectively.24 These medians fall 
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between the roughly $33,000 median for our NYC low-income neighborhoods and 
$47,000 for our middle-income NYC neighborhoods (these are the average medians in 
comparable 2009 dollars).  
 
Correlation coefficients indicate that the low birth weight rates among these lower 
income households in Connecticut and NYC move broadly together (see Table 8). This is 
in contrast to the negative correlation between the low birth weight rates of NYC’s low-
income and middle-income neighborhoods.  
 
TABLE 8 BELONGS HERE 
 
We add the trend in low birth weight rates among Black and Latino Connecticut 
households to our model as a control in two different ways. First, we include the trend 
variable by itself to examine whether there appears to be any relationship between the 
Connecticut low birth weight rates among Black and Latino households and among low- 
and middle- income neighborhoods in NYC. Specifically we add to our model the term: 
 
B11 (low birth weight rate among Black and Latino Connecticut households)t 
 
We then add a second control that allows the relationship between the low birth weight 
rates to vary between low- and middle-income NYC neighborhoods. Specifically we add 
to our model the following term:  
 
B12 (EITC-treated neighborhood)z x (low birth weight rate among Black and Latino 
Connecticut households)t 
 
In other words, this interaction term enables our regression to separately estimate: (1) a 
relationship between the trend in low birth weight rates of Black and Latino Connecticut 
households and our low-income NYC neighborhoods and (2) a relationship between the 
trend in low birth weight rates in the Black and Latino Connecticut households and our 
middle-income NYC neighborhoods. With this additional control, the model can account 
for regional trends in low birth weight rates among low-income households specifically. 
Our other controls will continue to account for trends in low birth weight rates within the 
City itself.  
 
In Tables 9 (LPM estimates) and 10 (GLM estimates), we present our results with these 
new controls. In each table, we include in column 1, our County-specific time trend 
controls and in column 2, our ZIP code-level indicators with an overall time trend 
control.  
 
TABLES 9 AND 10 BELONG HERE 
 
The coefficients on the Connecticut measure cannot be distinguished from zero. These 
results suggest there is no measurable regional trend in low birth weight rates that may 
explain the trends in NYC. Additionally, there appears to be no distinguishable difference 
in the relationship between the Connecticut low birth weight rates and low-income and 
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middle-income NYC neighborhoods separately. In other words, regional trends in low 
birth weight rates, as measured by Black and Latino Connecticut households, do not 
appear to explain the trends in low birth weight rates among NYC’s low- income 
households. 
 
At the same time, our coefficients of interest—the EITC rate interacted with our low-
income neighborhood indicator variable—are consistently negative. And, in most cases, 
these estimates are sufficiently precise to achieve statistical significance at conventional 
levels. The magnitudes of these coefficients suggest a marginal affect of the EITC in the 
range of a 0.20-0.50 percentage-point improvement in low birth weight rates for a 10-
percentage-point increase in the EITC rate.  
 
The results of these robustness tests increase our confidence in our main results: i.e., that 
the rise in the local (New York) EITC rate has lowered the low birth weight rate in 
NYC’s low-income neighborhoods. 
 
Our preferred specifications use: (1) GLM because it is a more appropriate estimation 
method for the low birth weight rate outcome; (2) EITC Benefit Per Capita to define our 
low-income neighborhoods because it divides our neighborhoods to produce the clearest 
contrast in EITC benefits between our treatment and control group (see Table 4); and (3) 
includes county-specific time trends because these seem to most thoroughly control for 
potential spurious trends. Based on these criteria, our results suggest that increasing the 
local EITC rate by 10 percentage points reduces low birth weight rates between 0.26 and 
0.30 percentage points.  
 
 
5. Discussion 
 
5.1 Evaluating the magnitude of our estimated EITC effect 
 

The results above provide empirical evidence that increased EITC benefits 
improves at least one measure of health for low-income NYC neighborhoods—low birth 
weight rates.  
 
We estimate that, while controlling for trends in low birth weight rates among NYC 
middle-income neighborhoods as well as Black and Latino Connecticut households, a 10-
percentage point increase in the local EITC rate (New York State and City’s combined) 
reduces low birth weight rates in the range of 0.3 percentage points.  Over the time period 
of our study, the New York State and New York City EITC rates combined increased 
from 20 percent to 35 percent by 2004. Our estimates indicate that these rate increases 
would lead to a 0.45 percentage-point reduction in low birth weight rates.  
 
Is this estimated impact large or small? One way to gauge the magnitude of our estimates 
is to consider that the average low birth weight rate across NYC’s poor neighborhoods 
only varied between 9.8 percent and 9.0 percent over this study’s entire 14-year period, 
from 1997 to 2010 – i.e., a range of 0.8 percentage points. Therefore, the magnitude of 
our estimates suggests that recent policy changes in the EITC program may have played a 
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sizable role in any improvements in the low birth weight rates among NYC’s poor 
neighborhoods.  
 
As discussed above, of primary interest to us is whether the impact of EITC benefits on 
neighborhood-wide health outcomes are larger than those observed at the individual 
household level. We attempt, in this study, to capture more fully the potential health 
impact of EITC benefits by measuring its affect at the neighborhood level. By doing so, 
our estimates should capture health affects that result from any positive neighborhood-
wide economic impacts from EITC benefits, not just those that occur within EITC-
recipient families.  
 
Our neighborhood-level observations allow us to generate estimates of the EITC health 
effect at the neighborhood level, but not the individual/family level. Fortunately, Hoynes 
et al.’s 2012 study present estimates of how the EITC affects low birth weight rates at the 
individual/family level appropriate for comparison with our own estimates.25 
Specifically, they present figures on the percent reduction in low birth weight rates which 
they link to a $1000 EITC (2009$) “treatment on treated” (ToT) that occurred as a result 
of the federal EITC expansions of the mid-1990s.  
 
In the Hoynes et al. study, single mothers with a high school degree or less constitute 
their treated (or “high-impact”) group since a large share of that demographic group 
qualifies for EITC benefits. Hoynes et al. (2012, p. 13) estimate that 42 percent of single 
women 18-45 years old with a child under age 3 and a high school education or less 
receive EITC benefits. Our treated group – low-income neighborhoods, variously defined 
– has a near-equal level of EITC eligibility (39-40 percent) as indicated by the share of 
EITC tax filers (see Table 3).26 In other words, our poor neighborhoods, with respect to 
EITC “exposure”, resemble the demographic group of single mothers with young 
children and a high school degree or less. This similar degree of EITC exposure between 
the two different treated groups allows us to directly compare our estimates of a $1,000 
(2009$) ToT to that of Hoynes et al. (2012). Thus, we can gauge whether differences 
exist between the individual/household level and neighborhood-level health effects 
associated with EITC benefits. We present the comparison figures in Table 11. 
 
Our regression estimates suggest that a 15-percentage-point EITC rate increase reduces 
the low birth weight rates in NYC’s impoverished neighborhoods by between 0.39 
percent and 0.45 percent. We know from our figures presented above in Table 4 that 
households experienced a net gain, on average, of $315 (in 2012$) in EITC benefits from 
1997-99 to 2005-07 when the local EITC rate increased by 15-percentage points. If we 
scale this figure to show the impact of a $1,000 (2009$) EITC treatment, the ToT per 
$1,000 would between 1.2 and 1.4 percentage points, representing a 13 to 15 percent 
reduction in the average low birth weight rate in those neighborhoods (see Table 11).  
 
In the last row, we present Hoynes et al.’s (2012) comparable estimates of the impact of 
the ToT per $1000 at the individual levels. Their estimates for this figure ranges between 
6.7 percent and 10.8 percent. Our point estimates of the EITC health impact measured at 
the neighborhood level, therefore, appear substantially larger than when measured at the 
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individual level. A comparison between the midpoints of these two ranges suggests a 
neighborhood-level affect roughly 50 percent larger.27 
 
TABLE 11 BELONGS HERE 
 
Our estimates of EITC’s magnified affect on low birth weight rates among low income 
neighborhoods suggests that it may be a useful policy tool for reducing health disparities 
by race and income.  
 
5.2 Why no measurable impact on pediatric asthma-related hospitalizations and rates of 
no/late prenatal care?  
 

In contrast to our estimate of EITC’s impact on low birth weight rates, our results 
for pediatric asthma-related hospitalizations and the no/late prenatal care rates indicate no 
consistent relationship with EITC benefits.  
 
It may be that of our three health-related outcomes, low birth weight rate is the most 
likely to respond in the short term to the meaningful, but still modest, relative income 
gains that our low-income neighborhoods experience. Note that due to our difference-in-
difference type analysis, we are examining the impact of the net gain in income due to a 
rise in EITC rates – i.e., how much more of an EITC increase households in low-income 
neighborhoods receive relative to households in middle-income neighborhoods. As we 
indicated in Table 4, for EITC-recipient households, these increases typically represent 
an income gain of about two percent. Even assuming that the impact of the EITC on 
recipient household spills over to their neighbors, the fact remains that the impact on the 
direct beneficiaries is modest.  
 
Improving one’s diet can be done quickly, with relatively few barriers to doing so, and in 
any range of increments—small or large. And, birth weights respond quickly to changes 
in maternal diets. Therefore, given the size of the relative income gains we are 
examining, birth weights may be the most likely outcome to respond. 

   
Reducing pediatric asthma hospitalizations and increasing prenatal care, on the other 
hand, may demand a combination of changes that require a larger infusion of income, and 
greater levels of effort not adequately supported by the EITC benefit increases we are 
examining. For example, our estimated net annual household income gains of about $790 
may only allow for limited improvements in housing conditions. Moreover, a two-percent 
income gain may not be adequate to improve one’s ability to find appropriate health 
services and/or coordinate medical care appointments that improve asthma management.  
 
The same could also be said for access to prenatal care. In other words, the EITC gains 
we examine may facilitate the kind of spending that Smeeding et al. (2000) referred to as 
“making ends meet” (e.g., buy food and clothes, pay bills), rather than investing in  
“economic and social mobility” (e.g., better housing). At the same time, our results are 
inconsistent with past findings of a positive impact of EITC on prenatal care (Hoynes et 
al., 2015).  
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Our study, unfortunately, does not provide any way to examine the specific channels by 
which EITC benefits do or do not influence these various health-related outcomes. We 
can only speculate as to reasons behind our uneven results. The data quality issues for our 
measure of prenatal care outcomes, however, likely contribute to our inconsistent and 
imprecise estimates for that measure. 
 
We want to add one final note about the unevenness of our results. The fact that health 
outcomes did not improve across the board allows us to rule out one type of spurious 
relationship that we cannot control for within our model: neighborhood gentrification 
over this period that should lead to across-the-board improvements in health outcomes.28 
That is, if, over the time period of our study, higher income households replace lower 
income households within the same neighborhood, we would expect that this would 
cause all three health outcomes to measurably improve, not just one.   
 
6. Conclusion 
 

Our analysis suggests that the New York State and City EITC expansions between 
1997 and 2010 improved health outcomes in the City’s low-income neighborhoods. 
Specifically, our estimates suggest that the 15-percentage-point increase in New York’s 
EITC rate (state and city combined) reduced the low birth weight rate in poor 
neighborhoods by 0.45 percentage points. This level of impact is substantial. During this 
time period, low birth weight rates fluctuated between a relatively narrow range—
between 9.0 percent and 9.8 percent.  
 
Our estimates also suggest that EITC’s impact on low-income neighborhoods is greater 
than the health improvements experienced by the average EITC-recipient household 
across all neighborhoods. Ours is the only study that we are aware of that does a 
neighborhood-level analysis of EITC’s impact on health. The magnitudes of our 
estimates of how the EITC affects low birth weight rates are substantially larger than 
comparable estimates in previous research by Hoynes et al. (2012). Our results therefore 
suggest that the EITC is even more effective at improving health when targeted at high 
poverty areas in particular. Due to the large overlap between economically-segregated 
and racially-segregated neighborhoods (see Table 3), the EITC may prove to be a useful 
tool for reducing both racial and socioeconomic disparities in health outcomes. 
 
Beyond evaluating the impact of this specific policy, the findings of this study provide 
useful insight into the relationship between income and health more generally. Examining 
the relationship between EITC policy changes and health outcomes is especially useful 
for enhancing our understanding of how income impacts health. Social policy changes 
can provide a source of income variation that is relatively exogenous to individual or 
household characteristics. This allows the researcher to avoid the endogeneity problem 
that frequently arises in studying the income/health gradient, i.e., the problem of 
distinguishing between changes in health that lead to changes in income and changes in 
income which cause changes in health. This study provides evidence that some of the 
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well-established correlation between improved health and earnings can be explained by 
how income gains result in improved health, rather than the reverse.  
 
The positive health benefits associated with the EITC should encourage policymakers to 
integrate the use of social and economic policies, such as the EITC, in their public health 
interventions and at the same time lend additional support to the viability and utility of 
such programs.  
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Figure 1. New York City Neighborhoods by Level of EITC Receipt Per Capita 

 
 Notes: Neighborhoods are defined by Per Capita EITC at the ZIP code level. High 
income ZIP codes receive below-average EITC benefits per capita, middle income ZIP 
codes receive average EITC benefits per capita; and low income ZIP codes receive 
above-average EITC benefits per capita. See text for details.    
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Table 1: Recent Changes in the New York EITC Programs, 1997-2014 
 

Year State EITC Rate Local EITC Rate Total 
1997 20.0% None 20.0% 
2001 25.0% None 25.0% 
2002 27.5% None 27.5% 
2003 30.0% None 30.0% 
2004 30.0% 5% 35.0% 
*NY state credit enacted in 1994.  
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Table 2: Correlations Coefficients of Demographic Variables,  
Measured at Two Points in Time by ZIP code 
 

Demographic Variable Correlation Coefficients 
between 1999 and 2006-10 

% High school degree or less 0.94 
% African American 0.98 
% Latino 0.97 

Source: U.S. Census Bureau 
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Table 3. Means of Main Variables 
 

Means Definition 1: 
Proportion of EITC 

filers 

Definition 2:  
Per Capita EITC 

benefit 

Definition 3:  
Median income 

 
Variable Middle-

income 
(Control) 

Low-
income 

(Treated) 

Middle-
income 

(Control) 

Low-
income 

(Treated) 

Middle-
income 

(Control) 

Low-
income 

(Treated) 
% African 
American 25.2% 45.7% 26.1% 45.5% 27.0% 44.4% 

% Latino 21.5% 40.3% 22.3% 40.0% 20.9% 41.2% 
% HS Degree or 
Less 52.8% 64.5% 52.8% 64.9% 53.4% 64.3% 

Median Income $51,228 $34,870 $49,839 $35,676 $52,075 $33,710 
% EITC filers 22.5% 40.0% 23.8% 39.3% 23.5% 39.5% 
EITC $ per 
capita $244 $408 $220 $436 $252 $404 

% Low Birth 
Weight 

8.3% 9.3% 8.3% 9.3% 8.2% 9.4% 

% No/Late 
Prenatal Care 

7.5% 8.3% 7.7% 8.2% 7.6% 8.3% 

Pediatric 
Asthma 
Hospitalizations 
Per 1,000 

4.45 8.52 4.77 8.48 4.51 8.64 

Notes: Sample sizes are about 600 for each separate group (e.g., the Definition 1 low-
income group has an N of about 600 and, the Definition 1 middle-income group has an N 
of about 600).  
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Table 4. Average Change in EITC benefits from 1997-99 to 2005-07 
 

  EITC benefit per capita (2012$) 

 
20% EITC 
(1997-99) 

35% EITC 
(2005-07) Difference 

Definition 1: Proportion of EITC filers 
Middle-income (Control)  $202   $252   $50  
Low-income (Treated)  $329   $429   $100  

Difference-in-Difference $50 
Definition 2: Per Capita EITC benefit  
Middle-income (Control)  $201   $222   $21  
Low-income (Treated)  $336   $462   $126  

Difference-in-Difference $105 
Definition 3: Median income  
Middle-income (Control)  $207   $262   $55  
Low-income (Treated)  $328   $424   $96  

Difference-in-Difference $41 
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Table 5: Linear Regression Model Main Results 
 

 

EITC rate, lagged x Treatment indicator 

1 2 3 
Dependent variable: Coeff. SE Coeff. SE Coeff. SE 
(A) PCTLBW    
Treatment Group:        

High % of EITC Tax Filers -0.024 (0.015) -0.024 (0.015) -0.027# (0.016) 
High Per Capita EITC Benefit -0.021## (0.008) -0.021## (0.008) -0.022### (0.008) 
Low Median Income -0.019# (0.011) -0.019# (0.011) -0.023# (0.012) 

(B) PRENATAL*       
Treatment Group:        

High % of EITC Tax Filers -0.023 (0.022) -0.023 (0.022) -0.016 (0.019) 
High Per Capita EITC Benefit -0.009 (0.019) -0.009 (0.020) -0.012 (0.015) 
Low Median Income -0.033# (0.020) -0.033 (0.020) -0.008 (0.020) 

(C) ASTHMA       
Treatment Group:        

High % of EITC Tax Filers -6.03## (2.69) -6.16## (2.83) -1.51 (2.79) 
High Per Capita EITC Benefit -3.13 (2.84) -3.28 (2.97) -0.81 (2.67) 
Low Median Income -10.16### (2.16) -10.19### (2.28) -4.40# (2.67) 

Controls:        
County Indicators X 

    County Indicators + Time Trend  
  

X 
  County Indicators x Time Trend         X 

Notes: Control Group: Moderate Income ZIPs; used panel corrected standard errors. Sample size 
approx. 1,100. *Prenatal regressions exclude 2009 data; sample sizes are approx. 1,050. 
 #  p-value<0.10; ##  p-value<0.05; ###  p-value<0.01.  
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Table 6: Generalized Linear Model Main Results 
 

  
Dependent variable: 

EITC rate, lagged x Treatment indicator 
1 2 3 

Coeff. SE Coeff. SE Coeff. SE 
(A) PCTLBW       
Treatment Group:        

High % of EITC Tax Filers -0.397## (0.132) -0.395## (0.160) -0.414## (0.176) 
Avg. Marginal Effect 
(Treatment – Control) -0.034 

 
-0.037 

 
-0.039 

 High Per Capita EITC Benefit -0.331## (0.162) -0.330## (0.161) -0.330# (0.173) 
Avg. Marginal Effect 
(Treatment – Control) -0.028 

 
-0.030 

 
-0.030 

 Low Median Income -0.280# (0.164) -0.279# (0.163) -0.279 (0.226) 
Avg. Marginal Effect 
(Treatment – Control) -0.023 

 
-0.024 

 
-0.024 

 (B) PRENATAL**             
Treatment Group:        

High % of EITC Tax Filers -0.517 (0.477) -0.524 (0.482) 0.039 (0.463) 
Avg. Marginal Effect 
(Treatment – Control) -0.034 

 
-0.032 

 
0.064 

 High Per Capita EITC Benefit -0.316 (0.470) -0.314 (0.475) 0.086 (0.447) 
Avg. Marginal Effect 
(Treatment – Control) -0.013 

 
-0.003 

 
0.074 

 Low Median Income -0.699 (0.454) -0.710 (0.458) 0.347 (0.518) 
Avg. Marginal Effect 
(Treatment – Control) -0.053 

 
-0.057 

 
0.017 

 Controls:              
County Indicators  X 

    County Indicators + Time Trend 
  

X 
  County Indicators x Time Trend         X 

Notes: Corrected for within panel first order autocorrelation and hetereskedasticity. *Prenatal regressions 
exclude 2009 and 2010 data. Sample size approx.: 1,000. # p-value<0.10; ## p-value<0.05; ### p-value<0.01.  
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Table 7. Robustness Test I: Using ZIP code level indicators 
 

Estimation Method:  LPM GLM 

Dep. Var.: PCTLBW 
EITC rate, lagged x 
Treatment indicator  

EITC rate, lagged x Treatment 
indicator 

Treatment Group:  Coeff. SE Coeff. SE 

Avg. Marg. 
Effect 

(Treatment 
– Control) 

High % of EITC Tax Filers -0.022## (0.010) -0.386## (0.159) -0.072 
High Per Capita EITC Benefit -0.017### (0.006) -0.302# (0.160) -0.064 
Low Median Income -0.018## (0.008) -0.316## (0.161) -0.065 
      

Controls:        

ZIP Indicators + Year Indicators 
  

  

Note: # p-value<0.10; ##  p-value<0.05; ### p-value<0.01. 
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Table 8. Correlation Coefficients Between the Proportion Low Birth Weight Rate of 
New York and Connecticut Communities, 1990-2010 
 

 
  

Proportion Low 
Birth Weight Rate 
Among: 

Low-Income NYC 
neighborhoods 

Middle-Income 
NYC neighborhoods 

Black and Latino 
Connecticut 
households 

Low-Income NYC 
neighborhoods 

1.00   

Middle-Income 
NYC neighborhoods 

-0.24 1.00  

Black and Latino 
Connecticut 
households 

0.63 -0.50 1.00 
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Table 9. Robustness Test II:  
Controlling for Trends in Low Birth Weight Rates Among Black and Latino 
Connecticut Households, Linear Regression Results 
 
Dep. Var.: PCTLBW   
Estimation Method: LPM 

 Treatment Group:  Coeff. SE Coeff. SE 
High % of EITC Tax Filers     

CT % low birth weight rate  0.116 (0.113) 0.123 (0.118) 
EITC rate, lagged x 
Treatment indicator -0.027# (0.015) -0.022## (0.010) 
 
CT % low birth weight rate 
x Treatment indicator  0.164 (0.269) 0.145 (0.247) 
EITC rate, lagged x 
Treatment indicator -0.025 (0.016) -0.019# (0.011) 

High Per Capita EITC Benefit     
CT % low birth weight rate  0.116 (0.117) 0.123 (0.118) 
EITC rate, lagged x 
Treatment indicator -0.022### (0.008) -0.017### (0.006) 
 
CT % low birth weight rate 
x Treatment indicator  -0.024 (0.153) -0.036 (0.144) 
EITC rate, lagged x 
Treatment indicator -0.022### (0.008) -0.018### (0.007) 

Low Median Income     
CT % low birth weight rate  0.116 (0.117) 0.123 (0.107) 
EITC rate, lagged x 
Treatment indicator -0.023 (0.012) -0.018## (0.012) 
 
CT % low birth weight rate 
x Treatment indicator 0.109 (0.198) 0.023 (0.189) 
EITC rate, lagged x 
Treatment indicator -0.022# (0.012) -0.018## (0.009) 
Controls:        
County Indicators x Year 
Trend X 

  
 

ZIP Indicators + Year 
Trend  

 X 

Note: #p-value<0.10, ## p-value<0.05; ###p-value<0.01. 
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Table 10. Robustness Test II:  
Controlling for Trends in Low Birth Weight Rates Among Black and Latino 
Connecticut Households, Generalized Linear Model Results 
 

Dep. Var.: PCTLBW   
Estimation Method: GLM 

 Treatment Group:  Coeff. SE Coeff. SE 
High % of EITC Tax Filers     

CT % low birth weight rate  1.453 (1.408) 1.544 (1.407) 
EITC rate, lagged x 
Treatment indicator -0.352### (0.115) -0.297## (0.107) 
Avg. Marginal Effect 
(Treatment – Control) -0.032  -0.054  
 
CT % low birth weight rate 
x Treatment indicator  1.862 (2.441) 1.475 (2.487) 
EITC rate, lagged x 
Treatment indicator -0.326### (0.115) -0.267## (0.111) 
Avg. Marginal Effect 
(Treatment – Control) -0.030  -0.052  

High Per Capita EITC Benefit     
CT % low birth weight rate  1.454 (1.409) 1.544 (1.406) 
EITC rate, lagged x 
Treatment indicator -0.287## (0.113) -0.234 (0.107) 
Avg. Marginal Effect 
(Treatment – Control) -0.026  -0.048  
 
CT % low birth weight rate 
x Treatment indicator  -0.520 (2.461) -0.820 (2.477) 
EITC rate, lagged x 
Treatment indicator -0.294### (0.112) -0.251 (0.110) 
Avg. Marginal Effect 
(Treatment – Control) -0.026  -0.050  

Low Median Income     
CT % low birth weight rate  1.456 1.410 1.545 (1.406) 
EITC rate, lagged x 
Treatment indicator -0.310## (0.150) -0.253## (0.108) 
Avg. Marginal Effect 
(Treatment – Control) -0.025  -0.050  
 
CT % low birth weight rate 
x Treatment indicator 1.225 (2.401) -0.182 (2.426) 
EITC rate, lagged x 
Treatment indicator -0.295## (0.149) -0.256## (0.193) 
Avg. Marginal Effect 
(Treatment – Control) -0.023  -0.050  
Controls:        
County Indicators x Year 
Trend X 

  
 

ZIP Indicators + Year 
Trend  

 X 

Note: # p-value<0.10; ## p-value<0.05; ### p-value<0.01. 
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Table 11. Evaluating the Estimated Impact of New York Local EITC Rate Increases 
on Low Birth Weight Rates in Low-Income Neighborhoods 
 GLM with County 

Indicators x Time 
Trend Controls 

GLM with County 
Indicators x Time 
Trend Controls and 
CT controls 

1. Treatment Effect* 0.45% 0.39% 
2. EITC Increase per 
household** (2012$)  $315  

3. Treatment on 
Treated (ToT) per 
$1000 (2009$)*** 

1.43% 1.24% 

4. Mean of dependent 
variable****:  9.50% 9.50% 

5. ToT per $1000 
(2009$), % impact 
(row 3/row 4) 

15.04% 13.03% 

6. Hoynes et al. (2012, 
p. 43) estimate of ToT 
per $1000 (2009$), % 
impact 

-6.7% to -10.8% 
 

Notes: *Treatment effect is evaluated for the 15-percentage-point EITC state and local 
credit rise that occurred over the study period, coefficients used are from our preferred 
specifications presented in Tables 6 and 10 (multiplied by 0.15). **See Table 4 for net 
change in average EITC benefit. ***To ease comparisons, we adopted the same real 
value benefit increase used in Hoynes et al. (2012). $1,000 in 2009$ is equivalent to 
$1,070 in 2012$.  ****Average % Low Birth Weight Rate in Poor Neighborhoods (1997-
99) 
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Endnotes 
!
1!!These!2013 numbers refer to EITC receipts based on tax year 2012. Data are from the 
Internal Revenue Service’s SOI Tax Stats, Historical Table 1. Available at: 
http://www.irs.gov/uac/SOI-Tax-Stats-Historical-Table-1; accessed January 30, 2014.!!
2 Over the years of this study, the federal EITC program also expanded to provide larger 
benefits for tax filer filing married jointly, and for households with 3 or more children. 
This, in turn, affected the EITC credit amount that flowed to households through the New 
York State and City credits since the local credits equal a percentage of the federal credit. 
See footnote 11, which provides further details on these expansions.  
3 These figures come from an earlier 2012 NBER version of Hoynes et al.’s 2015 
published article. Specifically, see Table 4, p. 43, of the 2012 paper (http://www.nber.org 
/papers/w18206; accessed January 15, 2015). In their 2012 paper, Hoynes et al. use the 
EITC credit received by single mothers with a high school or less to gauge the impact of 
the EITC expansion on health.   

These figures are different from those presented in their 2015 published version of 
their 2012 paper. In their 2015 published paper, they assess the health impact of changes 
in less-educated single mothers’ after-tax income that result from an EITC expansion. 
Their measure of after-tax income incorporates changes in earnings as well as other 
income subsidies such as TANF or SSI, not just changes in EITC benefits. By using the 
after-tax income measure, they assess the impact of income changes specifically—as 
induced by EITC changes—on health, rather than the impact of changes in EITC benefits 
alone on health.  

Our focus centers on how changes in the EITC policy specifically impacts health 
outcomes. We therefore use Hoynes et al.’s original 2012 approach to assess their results. 
4 For an overview of this research see the 2008 report, The Enduring Challenge of 
Concentrated Poverty in America: Case Studies from Communities Across America, 
published jointly by the Federal Reserve and the Brookings Institute Metropolitan Areas 
Program. This report summarizes the existing body of research on the specific 
consequences of living in high poverty areas, as well as, profiles of 16 such communities. 
5 In 2003, Leventhal and Brooks-Gunn documented a dramatic example of how reducing 
neighborhood-level poverty can improve the health of individual households in the 
absence of economic gains within individual households. They compared economic and 
health outcomes of households that participated in the “Move to Opportunity” social 
experiment conducted by the federal Housing and Urban Development agency. With the 
use of housing vouchers about 400 families, chosen at random, relocated from very poor 
to more mixed income neighborhoods. Households that relocated experienced a 
significant reduction in mental stress compared to those that did not, without any 
statistically significant improvement in their own economic well-being. Possible causes 
of reduced stress include a decrease in social disorder (e.g., crime, public drinking or 
drug use, conflicts) and access to a higher level of social resources such as improved 
quality of health services, schools, housing, and youth programs. 
6 See for example, Spencer (2007). This study measures the job impact of EITC benefits 
for low-income neighborhoods in Los Angeles. Spencer estimates that every additional 
$1,000 in EITC benefits supports three additional retail jobs.  
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!
7 In 2009, the American Recovery and Reinvestment Act temporarily added a fourth 
schedule for families with three or more children. Originally set to expire in 2012, it has 
been extended to 2017. 
8 A family of 4—including 3 children—had a poverty income threshold of $24,100 in 
2014. The beginning of the phase out range for this type of family, $17,830, is 26 percent 
below this poverty line.  
9 These parameters differ based on whether or not the tax-filing unit files married jointly. 
Those filing married jointly follow a more generous benefit schedule: the phase out range 
starts and ends at a higher income level. See the Tax Policy Center’s “Tax Facts, 
Historical EITC parameters” at 
http://www.taxpolicycenter.org/taxfacts/displayafact.cfm?Docid=36 .    
10 For budgetary reasons, Montgomery County’s EITC refund was reduced to 72.5 
percent of the state EITC in 2011, 68.9 percent in 2012, and 75.5 percent in 2013. See 
Tax Credits for Working Families at: 
http://www.taxcreditsforworkingfamilies.org/state/maryland/ 
11 At two different points during the time period of our study the federal EITC program 
expanded. Specifically, after the passage of EGRRTA of 2001, the federal EITC benefit 
schedule allowed for larger benefits and greater coverage rates for households with the 
tax filing status of married jointly.  These expansions took place over 2002 to 2008. Then 
in 2009, with the passage of ARRA, the federal EITC program increased benefits again 
for tax filers filing as jointly married, and also added a fourth, more generous, benefit 
schedule for households with 3 or more children. To account for all these changes over 
this period, we adjust the local credit rate to reflect both the increase in the federal 
benefits as well as the increase in local benefits that would result since local EITC 
benefits are a proportion of federal benefits.  

These adjustments result in the following local EITC rates shown in the table 
below, by year. Our adjustments are based on the Joint Tax Committee’s estimates of the 
overall tax revenue loss associated with each expansion. We use their estimates to 
calculate the average percentage increase in EITC benefit spending levels (i.e., revenue 
loss due to expansion/overall spending on EITC benefits). We then add the appropriate 
percentage point increase to the local rate to reflect the larger federal benefits, as well as 
the larger local EITC benefit resulting from the more generous federal EITC:  

 
Year Local Rate (no adjustment) Local Rate (adjusted) 
1997 20.0% 20.0% 
1998 20.0% 20.0% 
1999 20.0% 20.0% 
2000 22.5% 22.5% 
2001 25.0% 25.0% 
2002 27.5% 31.1% 
2003 30.0% 33.7% 
2004 35.0% 38.8% 
2005 35.0% 40.3% 
2006 35.0% 40.3% 
2007 35.0% 40.3% 
2008 35.0% 40.3% 
2009 35.0% 45.8% 
2010 35.0% 45.8% 
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12 The U.S. Postal Service determines the geographic units of ZIP codes by the number of 
residents in an area. The extremely high density of New York City insures that each ZIP 
code represents a very limited geographic area. Therefore, our ZIP-code level analysis of 
New York City allows us to effectively measure how EITC benefits and health outcomes 
interact at a geographic unit that can reasonably be described as a neighborhood. This is a 
particular advantage of studying New York City since more data are collected at the ZIP 
code level than other small geographic units. ZIP codes in New York City have a median 
area of 1.8 mi.2 and a mean area of 4.3 mi.2 Nationally, ZIP codes represent much larger 
geographic areas of 35.9 mi.2 and 88.6 mi.2, respectively. Source: 
http://proximityone.com/cen2010_zcta_dp.htm  
13 Rate changes, as opposed to changes in EITC benefits themselves, also better isolate 
how income changes unrelated to economic trends affect health. This is an important 
distinction: directly measuring how changes in EITC benefits impact health will likely 
produce a spurious correlation. This is because economic trends influence benefit levels 
and health outcomes at the same time.  For example, a household’s worsening overall 
economic situation can lead to both an increase in the EITC benefits it receives and to 
poor health outcomes in that household. This could occur if one earner in a dual earner 
household becomes unemployed and the household’s decline in income leads to health 
problems related to stress. At the same time, this household could become newly eligible 
to receive EITC benefits. Such a pattern of outcomes would cause changes in EITC 
benefit receipt and health outcomes to have a negative, spurious correlation. We examine 
the change in EITC credit rates to identify the true relationship between EITC benefits 
and health since variations in EITC credit rates cause changes in EITC benefits unrelated 
to economic trends. 
14 This is in contrast to the study by Strully et al. (2010) that examines the impact of the 
presence of a state EITC, not the impact of varying benefit rates. 
15 Nearly all EITC recipients receive their benefit as a lump sum rather than “in advance.” 
The tax filer receives the “lump sum” EITC payment during the year after they earn the 
income used to determine their benefit amount. “In advance,” EITC payments, in 
contrast, occur throughout the same year that the tax filer earns the income used to 
determine his/her benefit amount (Smeeding et al., 2000). 
16 See the Agency for Healthcare Research and Quality’s, “Pediatric Quality Indicators: 
Overview,” available at: http://qualityindicators.ahrq.gov/Modules/pdi_resources.aspx 
(accessed Jan. 20, 2015). 
17 See http://www.health.ny.gov/statistics/chac/perinatal/about.htm.  
18 Note that for our generalized linear model (GLM) estimates below, dropping data for 
2009 requires that we also drop data for 2010 since GLM does not allow for gaps 
between time periods. 
19 SPARCS is a cooperative effort between the healthcare industry and government, 
established in 1979, to collect healthcare claims data from both public and private payers. 
SPARCS collects patient level detail on patient characteristics, diagnoses and treatments, 
services, and charges for each hospital inpatient stay and outpatient (ambulatory surgery, 
emergency department, and outpatient services) visit, among other data. 
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20 We excluded high-income ZIP codes (real median-income > $60,400 in 2012 dollars) 
for two reasons: (1) As noted earlier, we believe this restriction makes the control group 
more appropriate because the affects of other economic trends will more likely overlap 
across low-income and moderate-income neighborhoods (as opposed to high-income 
neighborhoods); (2) this exclusion eliminates a spike of zero values in two of our health 
outcome variables—prenatal care and asthma measures.  These spikes are clearly due to 
the inclusion of high-income neighborhoods. Excluding high income neighborhoods 
allows the our health outcome measures to have a more normal distribution and therefore 
better suited for GLM and OLS regression methods. 
21 Note that the average marginal effect (AME) for each group of neighborhoods captures 
the marginal change in the low birth weight rates associated with a change in the local 
EITC rate. The “average” in this term refers to a specific type of measure. The AME is an 
average of the marginal effect of a change in the local EITC rate on the health outcome 
while holding only the type of neighborhood (i.e., low income or middle income) 
indicator variable fixed and using the values for all other independent variables as 
observed. For a thorough discussion of this see Williams (2012). 
22 These neighborhoods would experience some EITC income gains due to Federal 
expansions, but these expansions are, relatively speaking, small.  
23 Connecticut’s Department of Public Health, Office of Vital Records, “Vital Statistics,” 
see: http://www.ct.gov/dph/cwp/view.asp?a=3132&q=394598&dphNav=|46941|, 
accessed January 26, 2015.   
24 These figures are from the 2009 American Community Survey of the U.S. Census 
Bureau cited in “Racial disparities in median household income remain enormous in most 
states,” by Mike Alberti as part of the “Remapping the Debate” website: 
http://www.remappingdebate.org/map-data-tool/racial-disparities-median-household-
income-remain-enormous-most-states?page=0,2, accessed January 30, 2015. 
25 Again, as we noted in endnote 3, Hoynes et al. have since revised their 2012 paper. In 
their published version, they evaluate the impact of EITC benefits on health by using a 
measure of the EITC’s overall impact on a family’s after-tax income as their “treatment” 
dose rather than a measure of EITC benefits alone. Consequently, their 2015 published 
estimates of the impact of ToT per $1,000 are much smaller.  
26 We use EITC filing status to proxy for EITC eligibility in our sample.  
27!Interestingly, our neighborhood-wide estimates substantially overlaps with Hoynes et 
al.’s (2012) estimated impact for Black single mothers of young children. For this 
demographic subgroup, they estimate an 8.1 percent to 15.8 percent reduction in their low 
birth weight rate (based on their ToT per $1,000 in 2009$ measure). The similarity of 
these estimates may reflect the fact that the percentage of Black people living in poverty 
areas has been at least double that of the average person between 2000 and 2010 (Bishaw, 
2011). These figures are 25.7 percent vs. 50.4 percent for 2000 and 18.1 percent versus 
46.3 percent in 2010. In other words, the greater impact of EITC benefits on Black single 
mothers observed by Hoynes et al. could be explained, in part, by the fact that roughly 
half of Black people live in poverty areas—areas with a poverty rate of 20 percent or 
more.  
!



! 45!

!
28 For some evidence of recent gentrification, see Stringer (2014). We are grateful to 
Michael Carr for raising the question of how to account for New York City’s 
gentrification in our model. !


