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Introduction

Public access to information can drive change more effectively than regulations alone.
Some regulatory agencies are now taking such an approach to advance their objectives.
Right-to-know legislation, such as the Emergency Planning and Community Right-to-
Know Act of 1986 (EPCRA), provides the basis for many of the U. S. Environmental
Protection Agency’s (EPA) information disclosure initiatives. By requiring that the
public be informed about releases of toxic chemicals in their communities, EPCRA—
through its Toxics Release Inventory (TRI) in particular—can help to empower
community residents, heighten industry accountability to the citizenry, and support
efforts to ensure environmental justice.

The availability of basic data is necessary, but not necessarily sufficient, to accomplish
environmental justice objectives. The challenge is to verify the existence of disparate
impacts (e.g., disparities correlated with race and income) and to identify where they
occur, who is impacted, and who is responsible. To answer correctly such questions, it is
necessary to translate data into accessible, meaningful information. The Risk-Screening
Environmental Indicators (RSEI), a unique and advanced computer tool developed by
EPA’s Office of Pollution Prevention and Toxics, has the capability to translate toxic
chemical release data into more meaningful risk-related information required by
researchers and activists to analyze disparate impacts by race and income and to focus
properly risk-reduction efforts in communities.

The Toxics Release Inventory

A community’s right-to-know

In the early morning of December 3, 1984, methyl isocyanate, a highly toxic chemical
used in production of an insecticide, escaped from the Union Carbide facility located in
the midst of Bhopal, India, a heavily populated area of 800,000 people. This accidental
release resulted in the immediate deaths of 2,000 people and injured approximately
300,000 others. It is estimated that an additional 8,000 may have died later as a result of
their exposure. City health officials had not been informed of the toxicity of the
chemicals used at the Union Carbide factory. There were no emergency plans or
procedures in place, and no local knowledge of how to deal with the poisonous cloud.

Since Union Carbide was an American-held company, Congress and the public were
confronted with the possibility that such an incident also could occur at a similar facility
in the U.S. In fact, in 1985, Union Carbide accidentally released this same chemical in
Institute, West Virginia, injuring 140 people. These events led to the enactment in the
following year of EPCRA. Provisions of this Act promote emergency planning to
minimize the effects of an accident such as that which occurred at Bhopal, and mandate
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the provision of public information on releases of toxic chemicals in all U.S.
communities.

Section 313 of EPCRA established the TRI. This regulation requires manufacturing
(Standard Industrial Classification (SIC) codes 20 through 39) and several other industry
sectors and facilities in specified and federal facilities in any SIC code, to report on
releases of chemicals into the air, water, or land if they meet certain employee and
chemical thresholds.1 Specifically, a facility must report the pounds of its releases and
transfers of any of the 604 chemicals and chemical categories that are currently on the
TRI list if it (1) has 10 or more full-time employees, and (2) “manufactures” or
“processes” more than 25,000 pounds, or “otherwise uses” more than 10,000 pounds, of
any listed chemical during the reporting year.2 In 1997, 21,490 facilities reported TRI
releases; more than 43,000 facilities have reported TRI data since 1987.

The TRI offers the public direct access to detailed information about releases and
management of toxic chemicals in their specific communities. EPA compiles the
information submitted by facilities nation-wide into an on-line, publicly-accessible
database that reports releases of these toxic chemicals. Each year, EPA publishes a TRI
Public Data Release with various views of the data collected for that reporting year; it
also provides this data on the EPA website.

How are TRI data used?

Broad spectrums of private and public groups use TRI data. Concerned citizens use TRI
to raise and answer questions about chemicals in their local communities, and the
possible risks to public health and the environment. TRI serves as a public “report card”
for the industrial community, creating public relations incentives for waste reduction, and
providing local residents and public interest groups with credible grounds on which to
pressure company executives and public officials for changes in industrial practice and
public policy. Between 1989 and 1994 alone, public interest and community groups
published over 200 reports using the TRI data (Orum 1994). There is considerable
anecdotal evidence that information made available through right-to-know laws has
contributed significantly to community organizing efforts to change facility emission
behavior (see, for example, Lynn et al. 1992; MacLean 1993; Settina and Orum 1990,
1991; US EPA 1998.) Industry leaders have acknowledged the effect on their behavior: in
a survey of about 200 corporate counsels, over half indicated that “pressure from
community activists has affected [their] company’s conduct – sometimes forcing a
reduction in pollution” (Lavelle 1993).

State and local agencies rely on TRI to establish emergency planning procedures, to
formulate and pass critical legislation, and to enable toxic waste monitoring in
communities. Many states have passed right-to-know legislation that expands the data
collected under TRI and, in some cases, mandates reductions in emissions. In Louisiana
in 1989, the TRI data prompted the passage of a new air toxics law requiring a 50 percent
reduction of emissions by 1994. Several states have established programs at universities,
such as the Toxics Use Reduction Institute at the University of Massachusetts – Lowell.



3

Most state environmental protection departments provide technical assistance to aid
businesses in reducing toxic releases and other forms of pollution.

Federal agencies use TRI to prepare and implement environmental legislation and to
monitor national health risks. EPA applies TRI as a baseline to measure emission
reductions mandated by the Clean Air Act Amendments of 1990. TRI also is used to
monitor compliance with other laws, to target areas where enforcement of other
regulations is needed, to gauge the need for additional regulatory efforts to clean up
water, air, and solid waste problems, and to develop strategies for assessing pollution
prevention programs.

TRI is important to the education of the community regarding facilities and potential
hazards in the local area. National newspapers, including USA Today, the New York
Times, and the Wall Street Journal, as well as regional newspapers and scores of trade
and labor union publications, have run stories on TRI findings and the effectiveness of
the right-to-know statute.

Academics rely on TRI data for environmental research and education. For example, the
Environmental Studies Program at Dickinson College in Pennsylvania requires its
students to prepare toxic waste audits on communities or facilities, using TRI as a
resource. TRI reports are often pivotal in studies of chemical use and in the development
of alternative technologies for preventing toxic releases.

What do TRI data show?

To date, there have been very significant reductions in the pounds of TRI chemicals
released to the environment. From 1988 to 1997, on-site air releases of “core” TRI
chemicals (those which have had no change in their reporting requirements since TRI’s
inception in 1987) decreased by 55 percent in terms of weight. Reductions in the reported
releases of TRI chemicals to air were greatest in the earlier reporting years. In many
cases, the “low-hanging fruit” has already been picked, and the expenditures required to
reduce emissions further will be commensurately higher. Yet the quantities of toxic
chemicals released to the environment in the U.S. are still quite significant. In 1997,
facilities reported that 1.3 billion pounds of TRI toxic chemicals were released into the
air; on-site releases to all pathways plus off-site waste transfers amounted to 5.8 billion
pounds.

Chemical releases and risk

TRI data on the quantity of emissions alone do not reveal the extent to which public
health is at risk. The evaluation of risk requires consideration of not only how much of a
chemical is released, but also the toxicity of that chemical and the dose associated with
that release.

The toxicity of the TRI chemicals varies greatly; the human health impacts of the various
carcinogens and noncarcinogens in the inventory can differ by up to seven and eight
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orders of magnitude, respectively. That is, a single pound of one of the most toxic
chemicals, such as acrolein or methyl isocyanate, is toxicologically equivalent to one
hundred million pounds of the least toxic of these substances.

From a public policy perspective it is also important to have knowledge of the number of
individuals exposed. All things equal, e.g., dose and toxicity, a greater number of
exposed individuals may justify a risk-reduction initiative. When “other” factors are not
equal, decisions become less well defined. The human health effects of some TRI
chemicals depend upon the exposure pathway. Friable asbestos, for instance, is a highly
potent carcinogen when exposure occurs via inhalation, but it is not considered toxic
when ingested. And from a risk-screening standpoint, variations in the number of
individuals exposed are a major concern.

These factors can have a major impact on the ranking of risks associated with TRI
releases. Table 1 compares the rankings of the 50 U.S. states (plus Washington DC,
Puerto Rico, and the Virgin Islands) for total air releases of TRI chemicals in 1997 to air
from three perspectives: the quantity of pounds released; the hazard associated with those
releases, obtained by incorporating chemicals’ toxicity weights; and the resulting risks to
human health, incorporating dose and the size of the receptor population. The
consideration of chemical releases from hazard-based and risk-related perspectives re-
aligns state rankings considerably. Utah, for example, ranks fifth in the U.S. in sheer
pounds of airborne releases, 19th from a hazard-based perspective, but only 37th from a
risk-related perspective. The sparse population in much of the state drives down the latter
ranking. For example, a single facility in Utah had the highest quantity of air releases of
TRI chemicals in the country, but because no one lives within 30 kilometers of that
facility, these releases have minimal risk-related impact on human health. Pennsylvania,
on the other hand, ranks 14th in terms of pounds released, but fifth in terms of hazard and
third in terms of risk.

Table 1: Rankings based on air releases of TRI chemicals in 1997a

Pounds Hazard Total Risk

Rank State Percentage State Percentage State Percentage

1 TX 8.10% OH 9.30% OH 10.70%

2 TN 6.20% SC 9.30% IL 9.90%

3 LA 5.60% MO 8.30% PA 8.00%

4 OH 5.00% TX 7.70% TX 6.80%

5 UT 4.90% PA 5.80% IN 5.70%

6 IL 4.90% IL 5.10% MO 4.60%

7 AL 4.70% IN 4.70% CA 4.50%

8 IN 4.30% AL 3.40% MI 4.50%

9 NC 3.90% MI 3.20% AL 4.20%

10 GA 3.60% NC 3.00% NJ 3.90%

11 VA 3.60% LA 2.90% SC 3.80%

12 MI 3.30% TN 2.90% WI 3.30%

13 SC 3.30% WI 2.60% TN 2.80%

14 PA 3.00% AR 2.50% NY 2.70%
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Table 1: Rankings based on air releases of TRI chemicals in 1997a

Pounds Hazard Total Risk

Rank State Percentage State Percentage State Percentage

15 MS 2.90% GA 2.20% GA 1.90%

16 KY 2.60% IA 1.80% KY 1.80%

17 MO 2.50% KY 1.70% LA 1.70%

18 FL 2.40% NY 1.60% WV 1.70%

19 CA 2.30% UT 1.60% AR 1.50%

20 WI 1.90% NJ 1.50% IA 1.20%

21 AR 1.90% AZ 1.50% NC 1.20%

22 IA 1.80% OR 1.40% MA 1.10%

23 NY 1.80% MA 1.30% AZ 1.10%

24 WA 1.60% MS 1.30% CO 1.10%

25 KS 1.50% CA 1.20% VA 1.00%

26 OK 1.40% KS 1.10% KS 0.90%

27 OR 1.30% MT 1.00% MS 0.80%

28 MN 1.30% VA 1.00% WA 0.80%

29 WV 1.10% FL 1.00% OR 0.80%

30 NJ 0.70% WV 0.90% FL 0.80%

31 AZ 0.70% NM 0.90% MT 0.70%

32 MD 0.60% OK 0.80% OK 0.70%

33 NE 0.50% WA 0.80% NE 0.60%

34 PR 0.50% MN 0.70% CT 0.60%

35 ME 0.50% NE 0.60% MN 0.50%

36 MA 0.40% MD 0.60% NH 0.50%

37 CT 0.40% CO 0.50% UT 0.40%

38 ID 0.40% ME 0.50% DE 0.40%

39 MT 0.30% DE 0.40% MD 0.30%

40 AK 0.30% NH 0.40% NV 0.20%

41 CO 0.30% CT 0.30% NM 0.10%

42 DE 0.20% NV 0.20% ME 0.10%

43 NM 0.20% ID 0.20% PR 0.10%

44 WY 0.20% WY 0.10% ID 0.10%

45 SD 0.20% SD 0.10% RI 0.10%

46 NH 0.20% PR 0.00% WY 0.00%

47 ND 0.10% RI 0.00% SD 0.00%

48 RI 0.10% ND 0.00% ND 0.00%

49 NV 0.10% AK 0.00% HI 0.00%

50 VI 0.10% VT 0.00% VT 0.00%

51 HI 0.00% VI 0.00% AK 0.00%

52 VT 0.00% HI 0.00% VI 0.00%

53 DC 0.00% DC 0.00% DC 0.00%
 a No air releases were reported for Guam (GU) in 1997. Although there were air releases reported for
American Samoa (AS) in 1997, no population data has yet been incorporated into the RSEI model for AS and
GU. Therefore, these two U.S. Territories are not included in these results. In addition to the 50 states. data
are presented here for Washington, DC, Puerto Rico (PR), and the US Virgin Islands (VI).
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The EPA’s Risk-Screening Environmental Indicators Project

The EPA’s Risk-Screening Environmental Indicators (RSEI) model incorporates
information on chemical toxicity, exposure (“dose”), and the size of the exposed general
population. 3 This model was used to calculate the state-level rankings reported in Table
1; it can similarly generate risk indicators on a chemical-, facility-, geographic-, and
media-specific basis. Currently, TRI is the primary source of chemical release data used
in the RSEI model.4

Most studies of toxic releases have skirted the question of risk, generally treating all
chemical releases as equally dangerous (Brajer and Hall 1992; Glickman and Hersh 1995;
Kriesel et al. 1996; Perlin et al. 1995; Riley et al. 1993; Stockwell et al. 1993). Although
some researchers have begun to weight emissions for toxicity (Arora and Cason 1999;
Bowen et al. 1995; Brooks and Sethi 1997; Horvath et al. 1994), they generally have not
extended the concern with risk to the issue of dispersion of chemicals from their sources
to the receptor populations. Instead, most use a singular threshold distance to measure
risk.5 As Arora and Cason (1999) concede, most researchers “do not attempt to analyze
exposures as it would entail very elaborate mappings using the census tract and a
geographical information system.” Yet practitioners involved in risk analysis in specific
towns and local regions consider information on chemical dispersion to be essential. The
crude approach of most researchers on this question has often led to a discounting of their
results in the scientific and regulatory community.

Full-scale risk assessment is complicated and can require data that are not always
available. However, risk can be analyzed with varying levels of completeness. Risk-
screening approaches consider some or all of the factors associated with formal risk
assessment, without attempting to address every detail that would be needed for a
complete picture. In the case of the TRI data, such approaches fall along a continuum
ranging from the simplest depiction of “risk,” in terms of pounds of chemicals released to
the environment, to the most sophisticated characterization offered by a formal risk
assessment. The hazard-based perspective, which considers only the pounds of chemicals
released and their toxicity, is the next step along this continuum. To evaluate the degree
to which people are exposed to the chemical (that is, the dose at a given location and the
size of the population exposed), several models use surrogate (or “proxy”) information,
such as proximity to a facility discharging chemicals to the air. This approach does not
account for such important considerations as stack height, wind patterns, a chemical’s
decay in air, or pathway-specific toxicity. Unlike other tools, the RSEI includes
substantial site-specific information, placing it closer to the formal risk assessment end of
the continuum.6

To estimate the relative risks to chronic human health in the U.S. posed by toxic chemical
releases, the model integrates toxicity weights for individual chemicals and chemical
categories and exposure estimates, based upon pathway-specific reporting of releases to
air, water and land and the size of the potentially exposed general residential population.
The result is not a detailed, quantitative risk assessment, but a screening-level, risk-
related perspective for relative comparisons of chemical releases.
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The toxicity weights, which are directly proportional to a chemical’s toxicity value, are
assigned separately for the oral and inhalation exposure pathways, and include both
cancer and non-cancer effects.7 Chemical release data from TRI and pathway-specific
fate and transport models, accounting for such factors as wind patterns and stream flow,
are used to calculate the doses to which people may be exposed. For example, the
Industrial Source Complex Long-Term model estimates concentrations for air releases in
each square kilometer within a 101-kilometer by 101-kilometer grid in which a facility is
centered. For these purposes, the entire country is divided into an array of one-kilometer
square cells, with each facility assigned to one cell. Populations are also assigned to these
grid cells, based upon relevant latitude and longitude coordinates. The model uses block-
level 1990 Census data (the finest resolution of population) updated using annual county-
level data. The summed, risk-related value for all of the grid cells in the 101-kilometer by
101-kilometer grid in which a facility is centered is referred to as an “indicator element”
for that facility. 8 An indicator element is calculated for each combination of facility,
chemical, and release pathway (air and water). Approximately three million indicator
elements, representing all combinations of facility-chemical-medium, are generated and
stored for the eleven years (1988-1998) of TRI reporting data.

The RSEI model allows indicator elements to be rapidly combined by chemical, release
pathway, geographic area (national, EPA Region, state, county, city, or zip code),
industrial sector (2-, 3- or 4-digit Standard Industrial Classification code levels), facility,
or by combinations of these and other variables. Analyses using these variables can
evaluate a myriad of release and exposure scenarios, in most cases using 5 to 20 minutes
of computing time. The indicator values that correspond to these combined indicator
elements (e.g., for all the chemicals released to air by a given facility in a given year) are
unitless numbers, designed to be used for comparative purposes. The output is presented
not only from the full risk-related perspective, but also from the pounds-based and
hazard-based perspectives, allowing users to assess what factors are contributing most to
potential risk-related impacts.

Unlike formal risk assessments that require weeks, months or, in some cases, years of
technical and scientific staff time to perform, RSEI can answer many crucial questions at
a screening-level in a matter of hours. This type of tool can be used first to evaluate and
compare the potential impacts of toxic chemicals. The results can (and should) then be
supplemented by additional analyses if necessary, e.g., what is the nature of reporting for
the specific chemical category, or in some instances, the valence state of the chemical,
since RSEI makes conservative assumptions regarding these substances. By allowing
follow-up studies to focus, from the beginning, on initiatives that have the greatest risk-
reduction potential, RSEI can substantially improve the efficiency of the resources
expended.

Providing Information to Citizens and Communities

Generating risk-related information is not enough; this information must be made
available to citizens and communities if they are to assess the risks they face and take
action to reduce toxics in their communities. In the course of its development, the
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Indicators Project has been presented to a large and diverse set of interested parties from
the public and private sectors. The RSEI tool on CD-ROM has been subject to several
rounds of “beta testing” (reviewing the model for errors, ease of use, etc.) by a wide
audience of potential users. After receiving Freedom of Information Act (FOIA) requests
for the RSEI model from the Environmental Defense Fund (EDF) and the Bureau of
Environmental News of the Bureau of National Affairs, Inc., EPA decided to make the
model publicly available. Since July 1999, approximately 1500 copies of the RSEI CD-
ROM have been distributed to EPA Offices and Regions,9 TRI Regional and State
Coordinators, members of Congress, other federal and state agencies, environmental
organizations, public interest groups, industry, law firms, educational institutions, the
press, and citizens at large.

The RSEI model has been designed to be user-friendly. EPA facilitates its application by
providing a user’s manual, extensive context-sensitive help screens built into the
software, an internet home page, and direct help to users via e-mail or telephone. To
promote proper interpretation of the model’s results, extensive documentation of its
strengths and limitations are provided in the model itself, the user’s manual and the home
page. The Agency has also developed a training program for its Headquarters and
Regional staff and interested state personnel. As the audience requesting the model
widens, options for additional training, including internet-based “distance learning,” are
now being explored.10

Using RSEI for disparate impacts analysis

When considering negative externalities such as pollution, it is necessary to determine
not only the magnitude of the externality, but also its distribution. The latter has been the
primary focus of environmental justice research, viz., are there disparate impacts of toxic
substance exposures along demographic lines, such as race and/or income? The data
generated by the RSEI are well-suited to analyze this issue. Earlier disparate impact
analyses have been hampered by the lack of risk-related information available at a level
of resolution that can be correlated with relevant demographic characteristics of the
exposed population. In the next section, we evaluate nation-wide TRI on-site air releases
using data from the RSEI model.11 This national perspective suggests whether these
groups suffer disparate impacts as a whole, and can serve as a model for others to
perform regional or local disproportionate impact analyses to help identify hot spots of
potential environmental justice concern.

The indicator elements generated by RSEI not only account for many of the factors
relevant to risk, but do so on the basis of a 1-km-by-1-km spatial resolution. 12 This
degree of spatial resolution is particularly useful for disparate impact analyses, as grid
cells of this size can be aggregated to any level in order to analyze the geographic area of
interest (e.g., census block or block group, census tract, zip code, etc.).13 Approximately
10 million grid cells represent the U.S. and its territories. Of these, in 1996,
approximately 773,000 grid cells were impacted by on-site TRI air releases; that is, these
cells had both an estimated dose and people living within the cell.
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The race and income data used in the analysis below are drawn from the approximately
seven million census blocks and 230,000 census block groups delineated by the 1990
Census. Blocks and block groups represent the smallest geographic units for which
census information is available.14 Unlike the indicator’s stable grid cell size, census
blocks and block groups vary in size, depending upon the urban or rural setting in which
they are located. In sparsely populated rural settings, blocks and block groups may be
many times larger in area than the 1-km x 1-km grid cells used in the model and,
conversely, in a heavily populated urban setting, several blocks or block groups may be
associated with a single grid cell.

National Environmental Justice Analysis Using RSEI

In this section, the cell-by-cell data generated by the Risk-Screening Environmental
Indicators are combined with relevant census information to analyze the disparate
incidence of risk-related impacts from toxic chemical releases to air for areas located near
manufacturing facilities reporting TRI emissions for 1996. The analysis is not intended to
represent an accounting of the costs or benefits of living in areas associated with higher
or lower risk-related cell scores.15 Instead, this research represents the first time that
potential disparate impacts are tested along this vector of environmental medium with a
carefully designed risk-related measure. We find considerable differences in estimated
impacts among geographic areas. For this reason, we pay specific attention to systematic
differences between those areas with the highest risk-related cell scores and the other
areas affected by TRI emissions.

Following a discussion of methodological issues, we report an analysis of the difference
in means between the top risk-related decile and the rest of the sample. The difference-of-
means analysis provides an indication of the association between risk-related scores and
each of the racial, ethnic origin, and socio-economic groups considered, without
controlling for the independent effects of each other factor. We follow the difference-of-
means analysis with a multivariate regression analysis that controls for the independent
effects of other neighborhood demographic characteristics. The multivariate regression
analysis better controls for potentially confounding relationships among different
demographic variables.

Methodology

The RSEI indicator elements represent the sum of all affected grid cells on a facility-by-
facility basis. For the purpose of this analysis, however, we generated a separate RSEI
database representing the aggregated risk-related impacts of all nearby facilities on a
cell-by-cell basis. To study the relationship between relative risk and community profiles,
we matched these “cell scores” with census data pertinent to poverty and environmental
justice concerns.

Our research question is whether risk from air-borne chemical emissions is associated
with race, Hispanic-origin, and socioeconomic make up: that is, are some groups
disproportionately predominant in areas with large exposures to chemical emissions? To
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answer this question, we must consider how best to factor in the overall density of people
in an area.

The risk-related score for each square-kilometer cell is based not only on the amount and
toxicity of TRI air releases to which people residing in that cell are exposed, but also on
the number of people living there: all else equal, cells with a higher population density
will have a higher risk-related score. Difference-of-means comparisons based on those
scores provide an accurate indication of how remedial policies based on the RSEI model
would impact environmental justice concerns, but the apparent differences among
demographic groups could be due, in part, to the fact that some tend to live in more
densely populated areas. To assess the extent to which this affects our results, we also
present a difference-of-means analysis from a non-population weighted risk-related
perspective, in which population density does not affect the cell scores.16

The primary demographic characteristics we analyze are race, Hispanic-origin (ethnicity),
and socioeconomic class.17 We explore the expectation that minorities will be found in
higher proportions in higher risk areas, due to choices by facilities regarding emission
processes or siting; or to choices by potential residents regarding neighborhood selection;
or some combination of the two.18 Socio-economic class is characterized, as typically is
done in the environmental justice literature, by including median per capita income (in
$1,000 units), the percentage of people below the poverty line, and the proportion of the
work force that are unemployed. There are two potential and contrasting expectations
regarding the association between income and risk. On the one hand, higher incomes in a
community could lead to direct or indirect pressure on nearby facilities to decrease
pollution or shift emissions to other facilities, resulting in a negative correlation. On the
other hand, a larger manufacturing base could lead to higher incomes as well as higher
emissions and higher populations, resulting in a positive correlation.

We also examine the differences in the percentages of adults with college-level education
and those not completing high school. The expectation from an environmental justice
perspective is that those with lower educational achievement may be located in greater
proportions in areas with higher risk-related cell scores.

Finally, we also explore whether certain age groups are disproportionately represented in
places exposed to high levels of airborne emissions. Because older residents and children
may show particular sensitivities to airborne hazards, we examine the proportions above
age 64 and below age 18.

There are several limitations of Census data for this type of study. All demographic data
are self-reported responses. The selection of one category that best describes the
respondent’s identity may pose particular problems for the racial or ethnic-origin
variables for multi-racial respondents.19 The demographics from the 1990 Census are
available and measured at the block level, with the exception of the median income and
unemployment variables, which are available only at a higher level of aggregation known
as the block-group.20 Median income is the only demographic variable not measured as a
percentage.
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To allow easier interpretation of the RSEI risk-related scores used in our analysis, the
score for each grid cell is divided by the mean score for all cells, so that the new mean
score is one. These “centered” risk-related scores therefore are defined relative to the
average for all cells impacted by TRI-reporting manufacturing facilities.

Descriptive statistics for the risk-related cell scores for the entire sample are reported in
Table 2. A notable feature of these data is their extreme skewness. The vast majority of
the centered risk-related scores for individual grid cells fall between zero and one, but a
much smaller number of grid cells have risk-related scores up to thousands of times
higher than either the average or the median. The average relative risk score in the top
decile of cells is 320 times that found in the rest of the sample. Because of these extreme
variations, we focus below on the demographic differences between the areas of highest
risk and the other areas. Descriptive statistics for the Census demographics, as measured
at the level of square kilometer cells, are provided in Appendix Table 1.

Table 2: Descriptive statistics of population-weighted risk-related cell scores,
all cells, 1996

Category of cells Mean
Standard
deviation Skewness Median Minimum Maximum

All cells 17.74 300.73 86.48 0.036 7 x 10-11 65059
All cells (centered) 1.00 16.96 86.48 0.002 4 x 10-12 3668
Top decile (centered) 172.58 963.89 28.10 32.670 8.42 65059
Deciles 2-9 (centered) 0.54 1.32 3.48 0.205 7 x 10-11 8.42

Notes:
N=773,068.
Centered average cell risk-related scores are “centered” by dividing by the mean value for all cells (17.74).

Difference-of-means from a population-weighted risk-related perspective

The results of the difference-in-means tests are displayed in Table 3, which compares the
mean values of our demographic variables for the top risk-related cell score decile and
the rest of the sample (that is, the remaining nine deciles). The third column indicates the
absolute difference between the means for the top decile and the other deciles. Column
four presents the overall mean for all ten deciles, and column five shows the difference as
a percentage of the overall mean. 21

The differences in these mean values suggest that there are grounds for concern regarding
disparate risk-related impacts. However, the risk picture is not entirely unbalanced in
favor of “advantaged” groups. The proportion of non-Hispanic whites living in cells in
the highest risk-related score decile is significantly lower than in the lower-risk deciles,
while the percentages of blacks, Asians and persons of Hispanic-origin are significantly
higher. Asian and Pacific Islander populations show the greatest proportionate
differences, but as we will see when we discuss the non-population weighted risk-related
perspective, this is related strongly to their concentration in cells with high population
densities. The percentages for blacks and Hispanics also are more than twice as high in
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the top-risk decile as in the rest of the cells. These results support the concerns of
environmental justice advocates. Also in line with environmental justice concerns, the
percentage of the unemployed and the proportion of young people are higher in the top-
risk decile.

However, in contrast to expectations developed from environmental justice concerns,
Native Americans, who are less likely to live in highly industrialized areas, represent a
smaller proportion of the population in the highest risk neighborhoods than in the rest of
the sample. Similarly, the proportion of those with college educations is higher in the
highest risk-score decile while the proportion of those with no more than a grade-school
education is lower. These results suggest that, at the national level, the propensity for
personal income and education to rise with manufacturing production (and potential risk-
related impacts) is stronger than the countervailing pressure from higher-income or better
educated communities to reduce risk from chemical emissions.22 In addition, the
percentage of those people living below the poverty line and the proportion of elderly
residents is lower in the highest risk-related cells than in the rest of the sample.

Table 3: Difference-of-means for top impact decile vs. others,
from a population-weighted risk-related perspective

Demographic
characteristic

Top
risk

decile
Other
deciles

Absolute
difference

Overall
sample
mean

Difference
as % of
overall
sample
mean

% White 83.0% 92.3% -9.4%* 91.4% -10%
% Black 12.4% 5.4% +6.9%* 6.1% +114%
% Asian & Pacific
Islander 1.8% 0.6% +1.2%* 0.7% +166%

% Native American 0.5% 0.7% -0.2%* 0.7% -25%
% Hispanic origin 5.4% 2.5% +2.9%* 2.8% +106%
% Below poverty 12.0% 12.1% -0.1%* 12.1% -1%
% Unemployed 6.4% 5.8% +0.5%* 5.9% +9%
Median income
(in $ thousands)

$32.7 $30.5 +$2.2* $30.7 +7%

% Over 64 years old 12.9% 13.7% -0.8%* 13.7% -6%
% Under 18 years old 25.5% 24.9% +0.7%* 25.0% +3%
% Grade-school
education or less 25.4% 27.6% -2.2%* 27.4% -8%

% College educated 18.0% 14.7% +3.3%* 15.1% +22%

Notes:
N= 77,307 for top decile; 695,761 for rest of sample.
*Difference is statistically significant (p<.01) using two-sample t-test with unequal population variance and
using two-sided hypothesis tests.
Due to rounding, percentages within variable groups may not add up to 100 and differences in decile
medians may not appear correct.
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Overall, the difference-of-means tests present a mixed set of findings regarding relative
risk-related impacts from TRI-reporting facilities upon demographic groups of
environmental justice concern. There are substantially higher proportions of Asian and
Pacific Islanders and blacks relative to whites in the top-risk decile, and of Hispanics
relative to non-Hispanics. However, the income and education demographic
characteristics show weaker patterns of inequity or relationships reversed from that which
might be expected.

Difference-of-means from a non-population-weighted risk-related perspective

To examine the extent to which the differences in risk reported above are due to
differences in population density, we perform a similar analysis from a non-population-
weighted risk-related perspective. That is, we exclude the population-weighting factor of
the RSEI model and estimate the risk-related potential present in a cell regardless of
population. For this purpose, the cell scores are calculated only from the aggregated

Table 4: Difference-of-means for top impact decile vs. others,
from a non-population-weighted risk-related perspective

Demographic
characteristic

Top
risk

decile
Other
deciles

Absolute
difference

Overall
sample
mean

Difference
as % of
overall
sample
mean

% White 87.9% 91.8% -3.9%* 91.4% -4%
% Black 9.4% 5.7% +3.7%* 6.1% +54%
% Asian & Pacific
Islander

0.8% 0.7% +0.1%* 0.7% +7%

% Native American 0.6% 0.7% -0.1%* 0.7% -16%
% Hispanic origin 3.0% 2.7% +0.3%* 2.8% +8%
% Below poverty 12.7% 12.0% +0.7%* 12.1% +5%
% Unemployed 6.4% 5.8% +0.5%* 5.9% +9%
Median income
(in $ thousands) $30 $31 $-1* $31 -3%

% Over 64 years old 13.7% 13.7% -0.0% 13.7% -0%
% Under 18 years old 24.9% 25.0% -0.1% 25.0% -0%
% Grade-school
education or less

27.8% 27.4% +0.4%* 27.4% +1%

% College educated 14.2% 15.1% -0.9%* 15.1% -6%
Population density
(persons/km2) 480 237 +244%* 261% +93%

Notes:
N = 77,307 for top decile; 695,761 for rest of sample.
*Difference is statistically significant (p<.01) using two-sample t-test with unequal population variance and
using two-sided hypothesis tests.
Percentages within variable groups may not add up to 100 and differences in decile medians many not
appear correct due to rounding.
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chemical concentrations adjusted by toxicity and exposure considerations, without
considering the number of people residing in a cell. The results are presented in Table 4.

In general, this non-population-weighted perspective shows somewhat smaller
differences in the proportion of minorities in the top risk-score decile than did the
population-weighted risk-related perspective. Nevertheless, the percentages of blacks,
Hispanics, and Asians in the top-risk-potential neighborhoods remain significantly higher
than in the rest of the areas. The difference is particularly striking for blacks, suggesting
that the disproportionate impacts to which African-Americans are exposed are not
associated only with their residence in high population density locations.

Multivariate regression analysis

In this section we use multivariate regression analysis to explore whether certain
demographic groups are over-represented among the geographic units with the highest
risk-related indicator scores after controlling for the independent effects of other
demographic factors. This multivariate analysis of risk incidence uses probit techniques
to perform dichotomous dependent variable analyses. Probit regression models divide the
item to be explained into two values or groups – in this case, cells that are in the highest
quintile (20 percent) of RSEI scores and those that are not. The analysis focuses on what
demographic and socioeconomic variables affect the probability of being in one of the
two groups.

Due to the construction of the indicators to include population weighting, locations with
high and low population densities may have different estimated coefficients (as indicated
by Chow tests). Therefore, we analyze separately those areas that are densely populated
and those sparsely populated, as defined by whether the population density is above or
below 100 persons per square kilometer. Descriptive statistics for the variables, separated
into sparsely and densely populated locations, are presented in Appendix Table 2.

Probit models reveal the change in probability of being in the selected group (in this case,
the top risk-related score quintile) for hypothetical observations differing by one “unit” of
a demographic characteristic, holding all other factors constant. In this study, a one-unit
difference is the difference between a square kilometer cell with 0 percent of a given
demographic characteristic versus an otherwise identical cell with 100 percent of that
characteristic.23 The exception is median income, for which the probit results indicate the
change in probability of being in the top quintile for a cell with a median income of
$40,700, versus one with the average median income of $30,700.24 To ease interpretation,
all other demographic characteristics are held at their mean values when calculating the
effects of each variable.

The results of the probit analysis are summarized in Table 5. (Since probit regression
models are non-linear, the changes associated with the coefficients vary by the starting
value; Appendix Table 3 presents the original coefficients and their standard errors.)
Table 5 shows that Asians, Blacks, Hispanics, and the unemployed exhibit the strongest
positive associations with the RSEI risk-related indicator scores in densely populated
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areas. In contrast, the population under the age of 18 and the proportion of adults lacking
high school education exhibit negative relationships. These results are roughly consistent
with those found using the uncontrolled tests of differences in means examined earlier.

Table 5: Probit of top risk-related score quintile, 1996
(Percent change in probability a cell is in top quintile, based on
100% differences in demographic characteristics between cells)a

Demographic characteristic
Densely

populated
Sparsely
populated

% Below poverty –2.7% –0.9%
% Unemployed 21.6% 20.2%
Median income b 6.8% 55.7%
% Black 19.6% –0.8%
% Asian & Pacific Islander 52.3% 4.8%
% Native American –2.4% 5.0%
% Hispanic origin 11.6% –1.4%
% Over 64 years old –0.6% –0.2%
% Under 18 years old –9.5% 3.1%
% Grade-school education or less –5.5% –5.0%
% College educated –0.4% –0.1%
N 241,307 531,761

Notes:
a For instance, in densely populated areas, the model indicates a square kilometer cell with 100 percent
unemployment (column one, row two) is predicted to be 21.6% more likely than a cell with 0 percent
unemployment to be in the top risk-related indicator score quintile. For the median income variable, the
coefficients represent the change in the likelihood that a cell will be in the top risk-related indicator score
quintile, if the median income in the cell were $10,000 higher than the average median income of all cells.
b These figures include the combination of a linear and a squared term.

If one compares hypothetical cells in densely populated areas that contain 0 percent
Asians to ones that have 100 percent Asian population, the predicted probability of being
in the top risk-related score quintile rises by 52.3 percent (holding all other demographic
characteristics at their mean values). In more sparsely populated areas, the results show a
smaller 4.8 percent increase in the probability of being in the top quintile comparing cells
representing 0 or 100 percent Asians.

For the largest minority group, Blacks, the probit model predicts that areas with a 100
percent Black population have a 19.6 percent higher probability of being in the top
quintile than those with 0 percent in densely populated areas. The relationship between
proportion Black and the probability of being in the top quintile is negative but very
small in sparsely populated areas.

The probit models predict that densely populated areas that are 100 percent Hispanic
would be 11.6 percent more likely than 0 percent Hispanic areas to be in the top risk
quintile. In sparsely populated areas, 100 percent Hispanic cells would have a slightly
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lower probability (than 0 percent Hispanic cells) of being in the top risk quintile. The
relationship is the opposite for Native American areas: the probit model estimates a
negative relationship of 2.4 percent in densely populated areas, but a positive relationship
of 5 percent in sparsely populated areas.

The estimated relationship between median income and the probability of being in the top
quintile is U-shaped, becoming positive as the difference in median income becomes
larger further from the mean. In densely populated areas, a difference in median income
of $10,000 above the average is estimated to increase by 6.8 percent the probability of
being in the top quintile. This relationship appears to be even stronger in more sparsely
populated areas of the country, where a $10,000 increase in median income is associated
with a 55.7 percent increase in the probability of being in the top quintile of risk cells, all
else equal. These results run counter to the traditional relationship expected between risk
and median income.

In contrast, the probit model gives more intuitive results for unemployment. The probit
model predicts 100 percent unemployment to increase the probability of being in the top
quintile by about 20 percent relative to areas with no unemployment. This result holds in
both sparsely and densely populated areas, and it represents the largest relationship
between risk-scores and a demographic characteristic found in more sparsely populated
areas.

The probit model estimates a negative relationship between the likelihood of being in the
top risk-score quintile and the prevalence of poverty in a cell; a negative relationship also
holds for the proportion of adults lacking a high-school education. These results, like
those from income, run counter to the expectation that these groups would face higher
risks.25

In sum, the results of our multivariate analysis suggest that, holding the values of other
variables constant, in densely populated areas the proportions of Asians, Blacks,
Hispanics, and the unemployed have the largest impacts on the probability of being in the
top risk-related score quintile, findings consistent with environmental justice concerns. In
sparsely populated areas, unemployment again has a strong impact in the expected
direction, but income shows a counter-intuitive effect.26

Table 6 mirrors Table 5, but adjusts for the variation found within the sample by using a
one-standard-deviation difference from the mean, rather than a 100 percent difference, in
the demographic characteristic, to predict the change in probability of being in the top
risk-related score quintile.27 In each case, if one examines a standard deviation change in
the demographic characteristics of the square kilometer cells, the predicted change in
probability of being in the top risk related score quintile is fairly small. The largest
increase in densely populated areas is for Blacks at about 3.4 percent. That is, all else
held equal, a shift of the proportion of Blacks of 20 percent (one standard deviation) in
more densely populated areas is predicted to raise the probability a cell is among the top
quintile in risk-related scores by 3.4 percent.
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Table 6: Probit of top risk-related-score quintile, 1996
(Percent change in probability a cell is in top quintile, based on

one-standard-deviation difference in demographics between cells)

Demographic characteristic
Densely

populated
Sparsely

populated

% Below poverty –0.3% 0.1%
% Unemployed 0.8% 0.8%
Median income a –3.7% –4.5%
% Black 3.4% –0.3%
% Asian & Pacific Islander 1.6% 0.5%
% Native American –0.1% 0.9%
% Hispanic origin 1.3% –0.3%
% Over 64 years old –0.1% –0.0%
% Under 18 years old –4.7% 0.7%
% Grade-school education or less –1.7% –1.7%
% College educated –0.1% –0.0%
N 241,307 531,761

Notes:
a Median income is measured in $10,000 units. This figure includes both a linear and a squared term.

RSEI as a Tool for Change

The preceding analyses use a nation-wide database generated by the RSEI model to
assess environmental justice concerns with respect to TRI air releases. Such national-
level analyses can help to identify disproportionate impacts on minorities, but to take this
information and act upon it will require additional investigative efforts focusing on
specific geographic areas. Properly identifying those sources of releases that present the
greatest risk to the general public, or a disparate risk to specific population subgroups, is
a particularly important challenge – one that the RSEI model can help to meet. Presently,
decisions regarding policy and enforcement priorities are made either with inappropriate
data (e.g., pounds of emissions) or with expensive and time-consuming risk assessments
typically conducted on an ad hoc basis. RSEI helps resolve these issues by providing a
fast and inexpensive risk-screening tool for targeting purposes.

As described previously, the indicator elements generated by the RSEI model can be
combined in a variety of ways to provide additional analytical capabilities. For example,
drawing upon the findings described in the disparate impact analysis, and utilizing race-
and income-specific indicator elements, RSEI could be used to provide relative rankings
of all zip codes within the counties or cities of southern California. Furthermore, the
model could be used to identify the facilities, air exposure pathways, and chemicals of
greatest concern. 28 By comparing the changes in each year’s indicator values, starting
with the base year of 1988, one can use RSEI to obtain a risk-related perspective on
trends in environmental well-being, which can then be related to policies, socio-economic
variables, and chronic human health. The flexibility of the model also provides analysts
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with the opportunity to rank and prioritize facilities or chemicals for strategic planning,
risk-related targeting, and community-based environmental protection.

Since RSEI is a screening-level tool, additional investigation is required to ascertain, for
example, whether high rankings are associated with significant health effects. Such
investigation will be complicated by the fact that TRI emissions are only one component
of the chemicals that individuals are exposed to, comprising less than twenty percent of
total emissions nationwide. Other major sources of exposure include mobile sources,
such as motor vehicles, and indoor air emissions. And even apparently significant TRI
exposure levels may require additional investigation of the chemicals and/or facilities
identified as “drivers” of the relative rankings. Due to insufficient reporting information
regarding chemical compounds (e.g., the precise chemicals in a chemical category) and
the valence states (oxidation state) of certain metals and metal compounds, a priori
assumptions are sometimes made for modeling purposes.29 In those instances when
uncertainties exist, it is necessary to engage the relevant facilities in a dialogue to
determine the nature of their emissions, and whether remedial action is indeed warranted.

Conclusion

In this paper we have discussed an approach to generate and disseminate information to
those interested in environmental justice issues in a relatively sophisticated, quick and
inexpensive fashion. We also have presented the results of a nationwide analysis of data
generated by the RSEI model to assess environmental justice concerns with respect to
TRI air releases.

Overall, the RSEI risk-related scores reveal patterns of inequity of concern to
environmental justice advocates – higher risk for Blacks and Asians relative to Whites,
and in densely populated areas, for Hispanics relative to non-Hispanics. They also reveal
that higher unemployment is associated with higher risk. Other demographic
characteristics reveal weaker patterns of inequity, or relationships reversed from those
expected. The magnitude of inequities among demographic groups tends to be smaller for
more sparsely populated areas.

The Risk-Screening Environmental Indicators model brings important contributions to
the analysis of environmental justice issues. It can be used in a two-step fashion. First, it
is used to generate a national database that provides estimates of risk-related impacts
associated with TRI air releases for each square kilometer of the U.S. and its territories.
The format of these data is compatible with census and proposed GIS databases. As
demonstrated here, when these data are coupled with census information, it is possible to
examine the relationship between these risk-related impacts and demographic variables of
concern to the environmental justice community such as race, income, and age.

In the second step, the RSEI model (incorporating components to evaluate impacts at
various geographic scales) is used to perform queries, based on the findings from step
one, to identify geographic areas, chemicals, and facilities of particular concern. The
results can be used to inform and empower citizen groups to help bring about
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environmental improvements, and to help correct disparate impacts. These results will aid
decision makers, too, by helping to channel scarce resources to initiatives that have the
greatest risk-reduction potential. The unique capabilities of this risk-screening tool will
undoubtedly open other new research opportunities that can improve the health of
communities across the United States. Its usefulness will expand with experience and
further improvements to the model, including the ability to examine non-TRI chemicals
and reporters.30

Disclaimer: The views expressed in this paper are solely those of the authors and do not
necessarily reflect the views or policies of the U.S. Environmental Protection Agency or
ICF Consulting, Inc.
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Endnotes

1. In May 1997, EPA added several new industry sectors to those required to report
releases: metal mining, coal mining, electric utilities, commercial hazardous waste
treatment, wholesale chemicals and allied products, petroleum bulk terminals and plants,
and solvent recovery services. The new reporting facilities will provide data in July 1999
for the reporting year 1998.

2. A chemical is considered to be manufactured if it is produced, prepared, compounded,
or imported. A chemical is considered to be processed if it is prepared after manufacture
for distribution in commerce. The term “otherwise used” means any use of an EPCRA
Section 313 chemicals, including one contained in a mixture or other trade name product,
or waste that is not covered by the terms “manufacture” or “process.”

3. The Risk-Screening Environmental Indicators project has been on-going since 1991.
During that time a substantial amount of documentation of the model has been generated.
See Bouwes and Hassur (1997a, 1997b) and the Indicators Home Page at
http://www.epa.gov/opptintr/env_ind/index.html.

4. While TRI reporting does not cover all toxic chemicals or sources of chemical
emissions, this reporting represents one of the better and more complete databases
maintained by EPA. A future version of the model will allow use of alternative databases,
e.g., release information for non-TRI facilities or monitoring data for non-TRI chemicals.

5. Pollock and Vittas (1995) use a logarithmic functional form but without any reference
to chemical-specific dispersion and transportation. An exception to this pattern is
Hamilton (1999), who uses a commercially-available program that generates risk-related
measures from TRI data. The price of such a program is out of reach for most community
groups and researchers, and assumptions (e.g., nationally uniform stack heights of 10
meters) leave room for improvement.

6. The model does not provide estimates of actual risk to individuals as done in a formal
site-specific, quantitative risk assessment, which incorporates all relevant toxicity
information, exposure factors and activity patterns.

7. A chemical’s oral or inhalation toxicity, or potency, is represented by reference dose
and reference concentration for non-carcinogens, and oral slope factor and inhalation unit
risk factor for carcinogens, respectively.

8. Note that if no one lives in a grid cell, then the estimated risk-related contribution for
that cell is zero regardless of the estimated concentration.

9. The U.S. EPA structure can loosely be described as comprised of Headquarters and its
Regional Offices. Headquarters is primarily responsible for policy and regulation
development and the Regional Offices perform the role of intermediary between the
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Agency and states and the public. Following the release of RSEI, Regional Offices
requested training for themselves and their state-based constituents in the use of RSEI to
insure the correct use of the model.

10. Background information, technical documents, guidance on the use of this tool, new
developments, and model updates can be found on the web site for the Indicators Project
(http://www.epa.gov/opptintr/env_ind/index.html). The RSEI model is designed to run on
a personal computer (PC) using the Microsoft Windows 3.1 or 95/98/NT operating
systems. It can be obtained from the Toxic Substances Control Act Assistance
Information Service by calling (202) 554-1404 or writing to tsca-hotline@epa.gov.

11. Version 1.02 of RSEI generated the data for the analysis presented here. Version 1.02
is similar to subsequent versions, but has several differences: risk-related impacts are
generated for the air pathway only; cell-by-cell impacts are estimated for a 21-km by 21-
km grid, and population adjustments are made by interpolating between 1988 and 1990,
and between 1997 and 1990, using annual US Census County data and US Census
Decennial data, respectively.

12. The indicator elements generated by the model are defined by the summation of the
risk-related impacts of the cells contained in the 101-km by 101-km grid in which the
facility is centered. Since individual cells can be impacted potentially by more than one
facility, cell information is further manipulated to provide aggregated risk-related impacts
for each cell. The information associated with each one of these cells is stored in a
temporary file. For the disparate impact analysis discussed in this paper these temporary
files were generated from the cells in the 21-km by 21-km grid used in Version 1.02 of
RSEI.

13. Future research efforts will investigate the influence of factors such as geographic
scale of analysis and spatial autocorrelation.

14. Some environmental justice analyses have used the larger census tracts, of which
there are approximately 55,000 in the U.S.

15. Benefits of living in neighborhoods studied might include factors such as the value of
neighborhood amenities, proximity to places of employment, or demographic
composition. Costs might include impacts on health and on the valuation of
neighborhood amenities from the potential for additional health or ecological risk.

16. A drawback of exclusive reliance on a non-population weighted risk-related
perspective is that the results could be unduly influenced by the presence or absence of
minorities in sparsely populated areas. For example, a cell inhabited by one person who
happened to be African-American (and thus the cell would be 100% black), would
receive equal weight with a cell inhabited by 1,000 people, of whom 50% were African-
American.
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17. We follow the convention of using Census-defined terms “black” and “white” to
describe those racial groups in this paper. Hispanic origin is a separate category from race
on Census forms. Therefore, people self- identifying as Hispanic are included among
various racial categories. The Hispanic-origin category is most highly correlated with the
racial categories “white” and “other.”

18. For a discussion of siting vs. “move-in,” see Pastor (2001).

19. In the 1990 Census, people whose racial background spans more than one category
could only identify one racial category. The 2000 Census will allow respondents to
identify multiple racial identifications.

20. A census block is the smallest entity for which the Census bureau collects and
tabulates decennial census information. It is bounded on all sides by features shown on
Census Bureau maps. A block-group is a combination of census blocks that forms a
subdivision of a census tract or block numbering area (BNA). A block group consists of
all blocks whose numbers begin with the same digit in a given census tract or BNA.

21. Note that the overall means represent the average cell, not the share of each group in
all cells taken together. For example, blacks represent only 6.1% of the population in the
average cell, but a considerably larger percentage of the total impacted population by
virtue of the fact that they tend to live in more densely populated cells.

22. A univariate cross-sectional (rather than time series) test is not ideal for
discriminating among complicated interactions such as these. The results here are merely
suggestive of which underlying interactions might predominate.

23. The reference group against which each group is compared is whatever demographic
characteristic is not listed in that category. The racial categories are compared against the
excluded category of “White.” Similarly, the reference group is non-Hispanics for the
Hispanic-origin category, people between 18 and 64 years of age for the younger and
older age categories, and adults who have at least a high school degree but have not
completed a college Bachelor’s degree for the education categories.

24. Tests for non-linear relationships (i.e. relationships other than one-unit-to-one-unit
changes between the risk-related scores and a demographic characteristic) indicated a
quadratic (squared) relationship between risk-related scores and median income. Median
income therefore is represented by both median income and its square. In Table 5 these
relationships are combined for ease of interpretation.

25. Correlations among the demographic characteristics showed that in most cases there
is sufficient variation to preclude multicollinearity. The exceptions are moderately high
correlations between the two education variables, and between the education variables
and median income or proportion below poverty. If one excludes median income and
proportion below poverty from the model, the coefficients for the education variables
become statistically insignificant.
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26. The probit models explain only a small part of the variance in the dataset. Low
predictive ability is not unusual given the large number of observations. However, it does
caution researchers to remember that demographic variables characterize only a small
portion of the differences in relative risk.

27. The standard deviation is calculated from the set of all cells for which the value of a
demographic is not 0 percent, in order to avoid attenuation of the variance for the
variables representing percent minority residents.

28. Currently, the Indicator Elements database does not permit race- and income-specific
query variables, or geographic-specific queries below the zip code level. The size of a
database allowing this capability would be too large to be convenient in the current CD-
ROM PC environment. In the short term, this constraint could be dealt with by generating
supplemental databases that have race- and income-specific Indicator Elements. In the
long run, the RSEI model will be web-based, and database size will no longer be an issue.

29. TRI reporters are required to estimate only the number of pounds of the parent metal
for a metals category listing, and are not required to specify the valence of these
chemicals. In these instances EPA assigns the toxicity weight associated with the parent
metal to metal compounds and assumes the valence state of the metal with the highest
toxicity weight. This assumption is consistent with risk assessment practices at EPA of
maintaining a conservative position in the absence of sufficient information, preferring to
err on the side of caution, rather than possibly placing the public at risk.

30. In an effort to provide the most useful model possible, EPA encourages users to share
their research efforts and suggestions for model improvements through the comments
section of the RSEI Home Page at http://www.epa.gov/opptintr/env_ind/index.html, or to
contact the EPA authors of this paper directly.
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Appendix Table 1: Descriptive statistics of 1990 census demographics,
measured as square kilometer cells

Demographic characteristic Mean
Standard
deviation

Minimum Maximum

% Below poverty 12.06 10.68 0 100
% Unemployed 5.87 4.78 0 100
Median income (in $10,000s) 3.07 1.35 0 15
% Blacka 6.09 18.64 0 100
% Asian & Pacific Islandera 0.71 3.32 0 100
% Native Americana 0.66 4.92 0 100
% Hispanic origina 2.76 10.33 0 100
% White 91.41 20.41 0 100
% Over 64 years old 13.66 16.45 0 100
% Under 18 years old 24.96 13.18 0 88
% Grade-school education or less 27.43 14.44 0 100
% College educated 15.05 12.81 0 100
Population density 261.07 756.50 1 57000

Notes:
N=773,068.
a Percentages represent averages among square-kilometer cells, not proportions of each demographic in the

sample as a whole. For the racial/ethnic variables, these measures can differ greatly.
b Minimum values of zero are predominantly a function of a few cells with as few as one or two residents.
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Appendix Table 2: Descriptive statistics of 1990 census demographics,
measured as square kilometer cells, by population density

Densely Populated
(≥≥ 100/km2)

Sparsely Populated
(<100/km2)

Demographic characteristic Mean Standard
deviation

Mean Standard
deviation

% Below poverty 10.87 11.60 12.92 10.20
% Unemployed 5.80 5.34 6.01 4.57
Median income (in $10,000s) 3.50 1.72 2.83 1.08
% Blackb 8.60 20.00 4.81 17.66
% Asian & Pacific Islanderb 1.60 4.35 0.30 2.74
% Native Americanb 0.63 3.56 0.75 5.86
% Hispanic originb 4.77 12.10 1.83 9.18
% White 87.23 21.62 93.38 19.46
% Over 64 years old 12.36 9.61 14.39 18.92
% Under 18 years old 26.06 7.73 24.48 15.09
% Grade-school education or less 24.17 15.36 29.11 13.69
% College educated 19.58 15.84 12.82 10.39
Population density 753.12 1175.61 26.97 24.55
Risk scores, centereda 1.61 18.28 0.72 15.07
Number of cells in top risk quintile 119,434 35,180
Overall N 241,307 531,761

Notes:
a Risk-related scores for the full sample are centered, as in Table 2.
b Percentages represent averages among square-kilometer cells, not proportions of each demographic from

the sample as a whole.
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Appendix Table 3: Probit of top risk-related-score quintile, 1996,
estimated coefficients

Densely Populated
(≥≥ 100/km2)

Sparsely Populated
(<100/km2)

Demographic characteristic
Coefficient

Standard
Error

Coefficient
Standard

Error
% Below poverty –0.17*** 0.03 –0.05 0.03
% Unemployed 0.80*** 0.06 0.76*** 0.04
Median incomea –0.90*** 0.03 –1.65*** 0.07
Median income, squareda 0.03 0.03 0.09*** 0.01
% Black 0.74*** 0.01 –0.04*** 0.01
% Asian & Pacific Islander 1.59*** 0.08 0.24*** 0.06
% Native American –0.15* 0.07 0.24*** 0.03
% Hispanic origin 0.50*** 0.02 –0.08*** 0.02
% Over 64 years old 0.03 0.03 –0.01 0.01
% Under 18 years old –1.28*** 0.04 0.16*** 0.01
% Grade-school education or less –0.41*** 0.03 –0.36*** 0.02
% College educated –0.03 0.03 –0.01 0.03
Constant 0.64*** 0.03 –0.46*** 0.02
Pseudo R2 0.02 0.01
N 241,307 531,761

Notes:
All significance tests calculated using White’s robust standard errors.
a For presentational purposes, median income and median income squared are measured in

$100,000 increments in these two rows.
*** Statistically significant at the p≤.001 level.
*  Statistically significant at the p≤.05 level.
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