Supplemental Tables to Accompany

Green for All: Integrating Air Quality and Environmental Justice into the Clean Energy Transition

Bridget Diana, Michael Ash, and James K. Boyce Political Economy Research Institute (PERI) University of Massachusetts Amherst March 9, 2021

Table of Contents

- Table S-1: Top Twenty CO2 Emitters Among Electrical Generating Facilities
- Table S-2: Top Twenty CO2 Emitters Among Natural Gas Electrical Generating Facilities
- Table S-3: Top Twenty Co-Pollutant Damages Generators Among Electrical Generating Facilities
- Table S-4: Top Twenty Co-Pollutant Damages Generators Among Natural Gas Electrical Generating Facilities
- Table S-5. EJ Population Shares Near Electrical-Generation Facilities, by Fuel Type
- Table S-6: Co-Pollutant Damages for All and EJ populations, by Fuel
- Table S-7: Plant Characteristics and Demographics by CO2 efficiency
- **Table S-8: Comparing Decarbonization Scenarios**
- Table S-9: Annual Benefits and Costs of Including Air Quality and Environmental Justice in Decarbonization Program
- Table S-10: Regional Changes in Co-Pollutant Damages from All Fossil Fuel Electrical Generation Facilities
- Table S-11: Regional Change in Co-Pollutant Damages from Natural Gas Electrical Generation Facilities
- Table S-12: Companies Adopting Science-Based Targets with High (Top 100) US EPA RSEI Air Risk or Water Hazard
- Figure S-1: Map of eGRID Subregions

Table S-1: Top Twenty CO2 Emitters Among Electrical Generating Facilities Demographics within 5 km of the facility Co-Pollutant damages per CO2 output kg CO2 per 1000 mt CO2 Share low Facility County State Fuel (1000 mt) MWh (\$/1000 mt) Population Share Black Share Hispanic income Scherer Monroe GΑ Coal 16,690 1,082 10,537 2,324 20% 13% 48% Monroe MI Coal 16,390 996 16,933 12,027 6% 43% Monroe 5% Gibson Gibson IN Coal 16,337 927 47,881 3,259 2% 1% 41% Labadie Franklin MO Coal 14,853 942 82,595 2,788 1% 2% 23% Gen J.M. Gavin Gallia ОН Coal 14,469 904 103,234 962 0% 0% 41% W.A. Parish TX 902 22% 6% Fort Bend Coal 14,293 135,187 16,619 20% Bowen Bartow GΑ Coal 13,413 985 45,468 5,683 3% 4% 25% MT 12% Colstrip Rosebud Coal 13,316 1,052 19,674 2,446 0% 14% John E. Amos Putnam WV 12,536 965 23,957 9,331 1% 0% 31% Coal Harrison Power Station Harrison WV Coal 12,130 915 69,124 4,228 0% 1% 33% Sherburne County Sherburne MN 12,073 968 36,741 5,397 1% 1% 13% Coal Keystone Armstrong PA Coal 11,586 933 110,392 1,484 0% 0% 19% Rockport Spencer IN Coal 11,396 958 83,710 573 0% 13% 44% Sam Seymour TX 10,898 1,052 8,381 9% 4% 10% Fayette Coal 741 ΚY Ghent Carroll Coal 10,731 953 74,126 861 2% 3% 54% Conemaugh Indiana PA Coal 10,718 936 38,935 2,411 1% 1% 38%

The table lists the twenty fossil-fuel electrical generating plants with the CO2 emissions (1000 mt). Also shown are co-pollutant damages (\$) from NOx, SO2, and PM2.5 estimated with the APEEP model. Population and demographic shares within 5 km of the facility are from the US Census.

Source: US EPA eGRID 2018, APEEP, US Census, and authors' calculations.

976

1,057

1,024

1,000

37,280

6,278

17,162

86,915

727

1,343

1,677

1,165

2%

0%

76%

0%

1%

4%

0%

3%

47%

37%

59%

46%

10,186

10,036

9,772

9,679

Cumberland

Independence

Cross

Jeffrey Energy Center

Stewart

Berkeley

Pottawatomie

Independence

TN

KS

SC

AR

Coal

Coal

Coal

Coal

Table S-2: Top Twenty CO2 Emitters Among Natural Gas Electrical Generating Facilities

Demographics within 5 km of the facility

					Co-Pollutant damages per				
Facility	County	State	CO2 output (1000 mt)	kg CO2 per MWh	1000 mt CO2 (\$/1000 mt)	Population	Share Black	Share Hispanic	Share low income
West County Energy Center	Palm Beach	FL	7,192	363	4,769	3,080	10%	37%	28%
Jack McDonough	Cobb	GA	6,187	368	13,677	60,340	40%	8%	25%
Martin	Martin	FL	5,378	418	7,867	1,107	0%	55%	64%
Richmond County Plant	Richmond	NC	5,235	440	4,999	3,572	17%	2%	47%
Ninemile Point	Jefferson	LA	4,123	445	12,245	124,278	31%	8%	34%
Forney Power Plant	Kaufman	TX	4,103	394	5,497	18,686	14%	20%	18%
Sanford	Volusia	FL	3,985	400	11,558	22,657	12%	19%	27%
Gila River Power Station	Maricopa	AZ	3,676	563	2,416	1,644	4%	64%	61%
Union Power Station	Union	AR	3,635	353	2,489	1,411	20%	0%	34%
Dynegy Hanging Rock li, Llc	Lawrence	ОН	3,603	388	6,637	5,714	4%	1%	36%
Fort Myers	Lee	FL	3,522	379	5,855	19,058	3%	27%	40%
Mcintosh Combined Cycle Facility	Effingham	GA	3,417	377	2,902	2,659	6%	16%	24%
Polk	Polk	FL	3,323	404	8,261	1,303	25%	22%	50%
Brunswick County Power Station	Brunswick	VA	3,157	374	4,197	1,882	60%	0%	44%
Warren County Power Station	Warren	VA	3,048	372	1,356	6,772	9%	4%	20%
H.F. Lee Steam Electric Plant	Wayne	NC	3,036	421	7,362	5,075	22%	10%	37%
Odessa Ector Generating Station	Ector	TX	2,952	398	4,477	37,679	7%	59%	33%
P.L. Bartow	Pinellas	FL	2,932	415	14,661	35,774	10%	10%	28%
Midland Cogeneration Venture	Midland	MI	2,884	365	47,560	15,752	2%	4%	35%
Cottonwood Energy Project	Newton	TX	2,836	395	2,011	907	0%	0%	58%

The table lists the twenty natural gas electrical generating plants with the CO2 emissions (1000 mt). Also shown are co-pollutant damages (\$) from NOx, SO2, and PM2.5 estimated with the APEEP model. Population and demographic shares within 5 km of the facility are from the US Census.

Source: US EPA eGRID 2018, APEEP, US Census, and authors' calculations.

Table S-3: Top Twenty Co-Pollutant Damages Generators Among Electrical Generating Facilities

Demographics within 5 km of the facility

					L= 602 ===	Co-pollutant	Co-pollutant damages per				Chara land
Facility	County	State	Fuel	CO2 output (1000 mt)	kg CO2 per MWh	damages (\$ million)	1000 mt CO2 (\$/1000 mt)	Population	Share Black	Share Hispanic	Share low income
W.A. Parish	Fort Bend	TX	Coal	14,293	902	1,932.2	135,187	16,619	19.7%	22.4%	6.5%
Gen J.M. Gavin	Gallia	ОН	Coal	14,469	904	1,493.7	103,234	962	0.0%	0.3%	41.2%
Keystone	Armstrong	PA	Coal	11,586	933	1,279.0	110,392	1,484	0.0%	0.0%	18.6%
Labadie	Franklin	MO	Coal	14,853	942	1,226.8	82,595	2,788	0.7%	1.5%	22.6%
Belle River	St Clair	MI	Coal	7,838	992	1,144.3	146,002	6,665	1.4%	0.6%	23.9%
W.H. Zimmer Generating Station	Clermont	ОН	Coal	7,119	879	1,105.0	155,232	1,442	0.0%	2.6%	19.4%
Martin Lake	Rusk	TX	Coal	14,876	1,059	1,065.8	71,650	0			
Shawnee	McCracken	KY	Coal	7,305	1,162	1,037.9	142,085	7,536	5.4%	2.7%	46.3%
Rockport	Spencer	IN	Coal	11,396	958	953.9	83,710	573	0.0%	13.3%	44.0%
Miami Fort Power Station	Hamilton	ОН	Coal	4,987	922	890.1	178,486	11,000	2.6%	0.8%	11.0%
Independence	Independence	AR	Coal	9,679	1,000	841.2	86,915	1,165	0.0%	3.4%	45.8%
Harrison Power Station	Harrison	WV	Coal	12,130	915	838.5	69,124	4,228	0.3%	1.1%	32.6%
St. Clair	St Clair	MI	Coal	4,753	1,049	828.0	174,195	4,672	1.1%	0.8%	29.8%
Cardinal	Jefferson	ОН	Coal	9,470	943	809.9	85,530	3,889	0.6%	0.2%	36.1%
Ghent	Carroll	KY	Coal	10,731	953	795.5	74,126	861	2.4%	2.6%	54.5%
Gibson	Gibson	IN	Coal	16,337	927	782.2	47,881	3,259	2.5%	1.4%	41.3%
White Bluff	Jefferson	AR	Coal	8,457	1,025	770.6	91,120	2,489	4.5%	1.7%	41.6%
Rush Island	Jefferson	MO	Coal	7,082	912	705.2	99,566	0			
Archer Daniels Midland Co.	Macon	IL	Coal	665	499	687.2	1,032,730	19,853	21.2%	4.2%	48.8%
New Madrid Power Plant	New Madrid	MO	Coal	6,926	876	657.5	94,931	328	14.6%	0.0%	72.6%

The table lists the twenty electrical generating plants with the highest co-pollutant damages (\$) from NOx, SO2, and PM2.5 estimated with the APEEP model. Population and demographic shares within 5 km of the facility are from the US Census.

Source: US EPA eGRID 2018, APEEP, US Census, and authors' calculations.

Table S-4: Top Twenty Co-Pollutant Damages Generators Among Natural Gas Electrical Generating Facilities Demographics within 5 km of the facility Co-pollutant Copollutant damages per CO2 output kg CO2 per damages 1000 mt CO2 **Share low** Facility **Share Black** County State (1000 mt) MWh (\$ million) (\$/1000 mt) **Population Share Hispanic** income 16.1% Astoria Energy Queens NY 2,583 407 336.5 130,286 965,526 45.3% 42.1% Bergen Generating Station Bergen NJ 1,650 418 231.0 139,987 220,924 4.2% 38.6% 26.7% Midland Cogeneration Venture Midland 2,884 137.2 47,560 1.6% 3.6% 35.4% MI 365 15,752 104.7 25.2% Ravenswood Generating Station Queens NY 1,805 541 58,036 1,299,414 8.4% 20.5% Red Oak Power, LLC Middlesex NJ 1,647 386 87.9 53,389 75,128 9.6% 16.1% 20.1% Watson Cogeneration Los Angeles CA 892 299 85.0 95,206 200,425 13.1% 53.3% 36.6% Jack McDonough Cobb GΑ 6,187 368 84.6 13,677 60,340 40.0% 8.4% 24.5% 77.3 El Segundo Cogen Los Angeles CA 710 561 108,968 133,541 5.1% 27.1% 19.6% Linden Generating Station Union NJ 74.7 35,855 169,308 22.2% 46.9% 37.4% 2,084 396 **Astoria Generating Station** Queens NY 725 69.5 95,949 1,154,395 23.3% 36.3% 39.2% 663 **Doswell Limited Partnership** Hanover VA 2,430 500 63.4 26,081 1,992 33.3% 10.1% 35.2% Hudson 193,396 **Bayonne Energy Center** NJ 393 509 63.3 160,962 22.2% 31.1% 35.5% 0.0% 0.8% Big Sandy Lawrence ΚY 346 553 56.7 163,978 2,121 55.6% **New Castle** Lawrence PA 273 620 51.8 189,780 7,537 2.1% 0.2% 33.4% Ninemile Point Jefferson LA 4,123 445 50.5 12,245 124,278 31.5% 8.1% 33.6% Allen Shelby ΤN 1,618 533 47.6 29,397 749 100.0% 0.0% 63.8% FL Sanford Volusia 3,985 400 46.1 11,558 22,657 12.0% 19.3% 27.1% **Dearborn Industrial Generation** Wayne MΙ 1,721 346 44.3 25,751 125,269 14.2% 33.0% 67.2% Joliet 29 Will IL 371 590 43.6 117,737 49,237 24.5% 29.2% 36.2% P.L. Bartow Pinellas FL 2,932 415 43.0 14,661 35,774 9.7% 9.8% 28.4%

The table lists the twenty natural gas electrical generating plants with the highest co-pollutant damages (\$) from NOx, SO2, and PM2.5 estimated with the APEEP model. Population and demographic shares within 5 km of the facility are from the US Census.

Source: US EPA eGRID 2018, APEEP, US Census, and authors' calculations.

Table S-5. EJ Population Shares Near Electrical-Generation Facilities, by Fuel Type Extension of Table 1 **Hispanic share Black share** Low income share within 5 km within 5 km within 5 km Mean 95th percentile Mean 95th percentile Mean 95th percentile Fuel 8.1% 6.1% Coal 34.9% 22.4% 32.3% 59.2% 19.8% 64.3% 34.8% Gas 13.4% 53.4% 59.0% Oil 10.0% 13.1% 53.3% 31.6% 28.9% 48.7% Nuclear 8.5% 30.6% 5.7% 17.4% 27.3% 42.7% 9.1% 42.4% 11.4% 53.0% 36.0% 54.0% **US Counties** 18.7% **US Population** 12.7% 28.9%

The table shows the demographic composition within 5 km of fossil fuel electrical-generation facilities by fuel type. The mean values describe the average facility. The 95th percentile values describe facilities that are up the upper end of the distribution of representation of Environmental Justice populations. The demographic composition around nuclear facilities is shown for comparison as are the composition of US Counties and the entire US Population. Source: US EPA eGRID 2018 and US Census.

Table S-6: Co-Pollutant Damages for All and EJ populations, by Fuel Extension of Table 2

		Co-pollutant dam	ages	
Fuel	All	Black	Hispanic	Low Income
		Total (\$ billion	n)	
Coal	55.3	4.0	3.6	17.5
Gas	6.6	1.1	1.4	2.2
Oil	1.2	0.3	0.1	0.4
		Per MWh (\$/MV	Nh)	
Coal	47.3	3.4	3.0	14.9
Gas	4.8	0.8	1.0	1.6
Oil	72.1	14.6	8.1	23.6

The table presents co-pollutant damages (total and per MWh estimated damages in dollars from SO2, NOx, and PM2.5 using the APEEP model) by fuel for the total population and for three EJ groups.

Table S-7: Plant Characteristics and Demographics by CO2 Efficiency							
Extension of Table 3							
	Least CO2-efficient	Most CO2-efficient					
Fuel type							
Gas	30.25%	97.58%					
Coal	69.75%	2.42%					
Co-Pollutant damages per 1000 mt CO2	76,722	55,515					
Population within 5 kilometers							
Mean population	16,821	71,513					
Mean percent Black	8.18%	13.70%					
Mean percent Hispanic	9.54%	20.07%					
Mean percent low income	32.71%	35.42%					
Population within 15 kilometers							
Mean population	122,611	432,075					
Mean percent Black	9.00%	13.03%					
Mean percent Hispanic	10.21%	20.22%					
Mean percent low income	32.49%	33.61%					

The columns divide fossil-fuel electrical generation facilities into the lowest and highest thirds of total electrical capacity by CO2-efficiency (CO2 emissions per kWh).

Table S-8: Comp	paring Decarbonization Scenarios					
Outcome	Fuel	2018	Baseline	Carbon Alone	Carbon plus Air Quality	Carbon and Air Quality plus EJ
Electrical Generation		100	100	100	100	100
	Coal	28.5	25.6	15.0	14.1	14.2
	Gas	33.6	31.3	41.9	41.6	41.5
	Other	22.3	21.3	21.3	21.5	21.5
	Clean Renewable	15.7	21.8	21.8	22.8	22.8
CO2 Emissions		100	100	80	80	80
	Coal	67.4	66.4	35.9	35.5	35.6
	Gas	32.6	33.2	43.8	44.0	43.9
Co-pollutant damages		100	100	66.7	50	48.1
	Coal	89.3	89.3	53.5	36.4	36.5
	Gas	10.7	10.7	13.2	13.5	11.6
Co-pollutant dam	ages for EJ Population (Black)	100	100	66.8	55.0	47.9
	Coal	79.0	78.2	40.6	28.2	23.8
	Gas	21.0	21.8	26.1	26.8	24.1
Co-pollutant dam	ages for EJ Population (Hispanic)	100	100	73.7	67.1	47.9
	Coal	71.4	73.0	41.6	33.4	22.7
	Gas	28.6	27.0	32.1	33.8	25.1
Co-pollutant dam	ages for EJ Population (Low Income)	100	100	65.9	51.5	48.5
	Coal	88.6	88.5	51.9	37.2	36.2
	Gas	11.4	11.5	14.0	14.3	12.4

The table shows results of simulated carbon reduction and co-pollutant sensitive carbon reduction programs in the key domains of electrical generation by fuel, CO2 emissions, copollutant damages in total and for EJ groups, and generation costs. The decarbonization target in all of the decarbonization columns is a 20 percent reduction from 2018 levels. Except for the electrical generation fuel mix and cost, results are limited to coal and natural gas. Values are expressed relative to a baseline of no decarbonization. Values in bold face are model results; values in standard font are imposed goals. The 2018 values are shown to establish that the baseline is broadly calibrated to actual values.

Table S-9: Annual Benefits and Costs of Including Air Quality and Environmental Justice in Decarbonization Program Extension of Table 4

	Adding Air Quality	Adding Air Quality and EJ
Additional benefit	\$9.56 bn	\$10.61 bn
Additional cost	\$4.81 bn	\$4.84 bn
Net benefit	\$4.75 bn	\$5.77 bn

The table compares the additional benefits and additional costs of simulated co-pollutant sensitive carbon reduction programs to those of a 20% decarbonization alone program. Benefits are estimated damages avoided from SO2, NOx, and PM2.5 emissions (based on the APEEP model using standard EPA valuation methodology). Costs are the extra cost of supplying electricity so as to achieve the co-pollutant reduction goals.

Table S-10: Regional Changes in Co	Table S-10: Regional Changes in Co-Pollutant Damages from All Fossil Fuel Electrical Generation Facilities							
Percent change in co-pollutant damages from a 20% decarbonization relative to baseling								
Region	All	Black	Hispanic	Low income				
CAMX	156.7%	219.8%	186.5%	168.0%				
MROE	5.7%	5.2%	5.6%	5.7%				
MROW	-6.1%	-1.5%	-8.2%	-7.7%				
RFCW	-9.9%	-28.9%	-14.0%	-9.6%				
SPNO	-13.0%	-9.4%	-4.4%	-16.5%				
SRVC	-15.4%	-12.3%	-11.7%	-12.1%				
RFCE	-18.0%	10.6%	58.8%	-22.1%				
ERCT	-22.0%	-16.5%	-27.4%	-35.0%				
SPSO	-28.5%	-64.2%	-4.2%	-31.1%				
NEWE	-37.3%	-41.9%	-31.4%	-34.5%				
SRMW	-46.7%	-17.6%	-45.0%	-39.1%				
NYUP	-48.2%	-1.7%	-35.2%	-45.7%				
SRSO	-52.4%	-30.6%	-64.5%	-48.3%				
NYCW	-62.8%	-62.1%	-65.1%	-63.1%				
SRTV	-66.2%	-51.7%	-73.1%	-60.9%				
FRCC	-67.2%	-63.6%	-61.1%	-69.9%				
AZNM	-72.9%	-0.3%	-35.2%	-75.3%				
SRMV	-80.3%	-63.2%	-38.8%	-82.3%				
RMPA	-86.2%	-77.6%	-86.8%	-89.9%				
NWPP	-88.1%	-19.4%	-83.4%	-82.1%				
RFCM	-90.0%	-79.9%	-88.4%	-88.9%				
NYLI	-91.5%	-96.0%	-92.2%	-92.9%				

The table shows the percent change in damages from copollutants from all fossil-fuel electrical generation facilities for a 20% decarbonization relative to baseline damages from copollutants from these facilities for all people, for Black people, for Hispanic people, and for people living below 200% of hte Federal Poverty Line. A positive value indicates that the copollutant damages from natural gas facilities increases under the 20% decarbonization program. Change in damages is based on a linear programming simulation of a 20% decarbonization program. See Figure S-1 for Map of Electricity Subregions.

Table S-11: Regional Change in Co-Pollutant Damages from Natural Gas Electrical Generation Facilities Percent change in co-pollutant damages from a 20% decarbonization relative to baseline Region **Black** Hispanic Low income CAMX 155.9% 219.6% 186.1% 166.9% SRTV 105.0% 230.2% 79.4% 116.0% **NWPP** 104.4% 99.3% 61.7% 125.8% **RFCE** 101.0% 88.6% 169.8% 105.9% 57.0% 69.9% 22.6% **AZNM** 34.3% **RMPA** 51.8% 31.9% 53.4% 49.2% SRMV 51.0% 43.6% 56.4% 49.5% **SRMW** 48.4% 46.7% 56.9% 49.5% SRVC 47.8% 44.0% 43.5% 39.7% **SRSO** 38.9% 39.9% 35.1% 17.4% **RFCM** 25.3% 10.6% 17.2% 22.1% **SPSO** 21.8% 36.1% 27.8% 23.8% **RFCW** 18.7% 20.3% 31.9% 20.0% **MROW** 17.8% 19.1% 10.1% 14.1% NYUP 17.4% 3.2% -23.7% 14.8% **ERCT** 17.2% 20.8% 16.7% 16.7% **MROE** 16.1% 7.9% -1.2% 13.6% FRCC 11.0% -3.7% -7.2% 4.9% SPNO -3.3% -19.7% -7.2% -3.4% **NEWE** -19.1% -26.6% -17.8% -14.5% **NYCW** -62.8% -62.1% -65.1% -63.1% NYLI -91.5% -96.0% -92.9% -92.2%

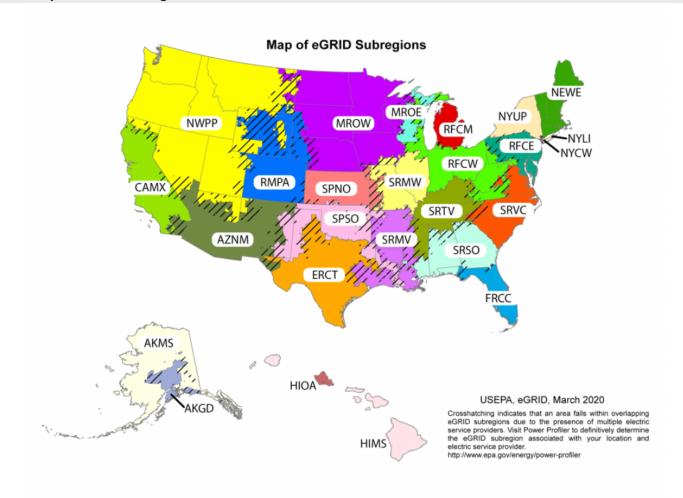

The table shows the percent change in damages from copollutants from natural gas facilities for a 20% decarbonization relative to baseline damages from copollutants from natural gas facilities for all people, for Black people, for Hispanic people, and for people living below 200% of the Federal Poverty Line. A positive value indicates that the copollutant damages from natural gas facilities increases under the 20% decarbonization program. Change in damages is based on a linear programming simulation of a 20% decarbonization program. See Figure S-1 for Map of Electricity Subregions.

Table S-12: Companies Adopting Science-Based Targets with High (Top 100) US EPA RSEI Air Risk or Water Hazard								
Extension of Table 5 Company Adopting Science-Based Target	PERI Toxic 100 Parent Company	Headquarters	Sector	Rank among all US polluters	Nonwhite Share	Low Income Share		
A. Top Air Polluters Based on US EPA RSEI Air Score								
Clariant AG	Clariant	Switzerland	Chemicals	8	58.2	33.2		
Croda International Pl	CRODA INC	United Kingdom	Chemicals	11	49.7	34.0		
Terumo Corporatio	Terumo	Japan	Healthcare Equipment and Supplies	14	32.4	25.0		
Ecolab	Ecolab	Minnesota, USA	Chemicals	17	78.7	36.4		
Klöckner & Co	Klockner	Germany	Mining - Metals (Iron, Aluminium, Other Metals)	35	59.2	39.7		
AkzoNobel	Akzo Nobel	Netherlands	Chemicals	50	70.3	42.0		
Ardagh Group S.A.	Ardagh Group	Luxembourg	Containers and Packaging	62	43.1	25.2		
Linde plc	Linde	United Kingdom	Chemicals	74	47.6	44.5		
Solvay	Solvay	Belgium	Chemicals	77	57.2	35.6		
Kingspan Group Plc	Kingspan PLC	Ireland	Building Products	97	18.1	27.4		
		B. Top Water Pollut	ers Based on US EPA RSEI Water Hazard					
Clariant AG	Clariant	Switzerland	Chemicals	7	56.6	30.9		
Nemak, S.A.B. de C.V.	Alfa S.A.B.	Mexico	Automobiles and Components	19	42.9	34.6		
Cargill, Inc.	Cargill	Minnesota, USA	Food and Beverage Processing	69	27.0	32.1		
Tate & Lyle PLC	Tate & Lyle	United Kingdom	Food and Beverage Processing	95	19.8	35.2		
Mitsubishi Electric Corporation	Mitsubishi Group	Japan	Electrical Equipment and Machinery	63	27.4	28.1		
MITSUBISHI ESTATE CO., LTD.	Mitsubishi Group	Japan	Real Estate	63	27.4	28.1		
Nippon Yusen Kabushiki Kaisha	Mitsubishi Group	Japan	Water Transportation	63	27.4	28.1		
AES Tietê	AES Corp.	Virginia, USA	Electric Utilities and Energy Related	35	9.8	31.3		
Sappi Ltd.	Sappi	South Africa	Forest and Paper Products	60	9.5	27.4		
SUEZ	Suez Environnement	France	Water Utilities	15	26.5	20.6		
SUMITOMO CHEMICAL Co., Ltd.	Sumitomo Group	Japan	Chemicals	71	14.9	36.9		
Sumitomo Electric Industries, Ltd.	Sumitomo Group	Japan	Automobiles and Components	71	14.9	36.9		
Sumitomo Forestry Co., Ltd	Sumitomo Group	Japan	Homebuilding	71	14.9	36.9		

The table lists companies that have adopted Science-Based Targets for greenhouse-gas reductions (as of December 18, 2020) that the US EPA Toxics Release Inventory and Risk Screening Environmental Indicators place among the top 100 companies for either air-pollutant RSEI risk or water-pollutant RSEI Hazard (out of 5,799 companies ranked for air releases and 3,253 companies ranked for water releases). The Environmental Justice shares for air report the percent share of the air-pollutant RSEI Risk from all company releases borne by nonwhite people or by people living below 200% of the US Federal Poverty Line. The Environmental Justice share for water report the water-pollutant RSEI Hazard-weighted population shares living within 10 miles of company-owned facilities. US population percent nonwhite is 37.2%. The US population percent living below 200% of the Federal Poverty Line is 28.9%.

Sources: Science Based Targets, US EPA, US Census, and PERI/CTIP Toxic 100.

Figure S-1: Map of eGRID Subregions

