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Abstract

This paper examines spatial variations in exposure to toxic air pollution from
industrial facilities in urban areas of the United States, using geographic
microdata from the U.S. Environmental Protection Agency’s Risk-Screening
Environmental Indicators project. We find that average exposure in an urban
area is positively correlated with the extent of racial and ethnic disparity in the
distribution of the exposure burden. This correlation could arise from causal
linkages in either or both directions: the ability to displace pollution onto
minorities may lower the effective cost of pollution for industrial firms; and
higher average pollution burdens may induce whites to invest more political
capital in efforts to influence firms’ siting decisions. Furthermore, we find that in
urban areas with higher minority pollution-exposure discrepancies, average
exposures tend to be higher for all population subgroups, including whites. In
other words, improvements in environmental justice in the United States could
benefit not only minorities but also whites.

Keywords: environmental justice; air pollution; industrial toxics; Risk-Screening
Environmental Indicators.
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Introduction

This paper examines exposure to toxic air pollution from industrial facilities in urban
areas of the United States. Specifically, we analyze the relationship between spatial
variations in the magnitude of pollution exposure and its distribution across racial and
ethnic subgroups of the population. To do so, we use geographic microdata from the
U.S. Environmental Protection Agency’s Risk-Screening Environmental Indicators
(RSEI) project, aggregated to the level of the Core Based Statistical Area (CBSA).

Individual exposures to industrial air toxics depend on both the average exposure in the
CBSA in which a person resides and the extent to which exposures disproportionately
impact specific population subgroups. Consistent with prior research, we find evidence
that within any given urban area, racial and ethnic minorities tend to bear greater
exposure burdens. The extent of the disparity varies considerably, however, across
CBSAs. When wide disparities are found in cities where average exposure is relatively
high, the harm to minorities is greater than in cases where disparities are wide but
average exposure is low.

We test the hypothesis that average exposure is positively correlated with the extent of
racial and ethnic disparity in the distribution of exposure burdens. There are two
reasons to expect such a correlation. First, where it is easier to displace pollution onto
population subgroups with limited politically effective demand for clean air, firms are
likely to pollute more. In effect, the firm faces lower costs of pollution. Second, in urban
areas with more industrial air pollution, residents will be likely to invest more political
capital in efforts to affect siting decisions, and as a result siting will be more strongly
shaped by the distribution of political influence. In effect, politically influential
subgroups face higher benefits from pollution shifting.

If the correlation between average burdens and the extent of disparities is sufficiently
strong, it is possible that all groups — including whites — would face lower total
exposure burdens in urban areas with lower disparities. In other words, environmental
justice could be good for white folks, too. Our results provide strong support for this
conclusion. We find that in CBSAs with higher minority discrepancies, defined as the
difference between the minority share of exposure burdens and the minority share of
population, average exposures tend to be higher not only for minorities but for whites,
too.



We also examine income effects. Among both whites and minorities, exposures are
higher for poor households than for non-poor households. But even among non-poor
whites, exposure is lower in cities where the minority discrepancy is lower. Even after
controlling for other variables, including average CBSA income and the manufacturing
share of CBSA employment, the adverse impact of minority discrepancy on exposure
burdens of all groups is statistically significant.

Correlates of Environmental Disparities

Since the publication of the landmark report Toxic Wastes and Race in the United States
(Commission for Racial Justice, 1987), research and public attention to the topic of
environmental justice has grown dramatically in the United States. There is now a
substantial body of literature documenting environmental disparities along lines of
both race and class: minorities and low-income communities tend to face greater
hazards (for reviews, see Mohai and Bryant, 1992; Szasz and Meuser, 1997; Ringquist,
2005; Bullard et al., 2007; Pastor, 2007; and Boyce, 2007).

Explanations for these disparities fall into three general categories: (1) market-based
explanations in which environmental hazards lead to lower property values in nearby
neighborhoods, inducing in-migration by low-income households (see, for example,
Been, 1994; Banzhaf and Walsh, 2006); (2) socio-political explanations in which hazards
are sited in communities that lack sufficient social capital and political influence to offer
effective resistance (see, for example, Bullard, 1990; Hamilton, 1995; Pastor, 2003; and
Saha and Mohai, 2005); and (3) racial discrimination in the siting of hazards and/or in
the functioning of housing markets (see, for example, Hurley, 1995; Pellow, 2002; and
Bullard et al., 2007; Crowder and Downey, 2010).

In a study of “which came first’ in metropolitan Los Angeles — whether disparities
result from siting decisions that followed pre-existing demographics or demographic
shifts that followed siting — Pastor et al. (2001) found strong evidence of the former and
weak evidence of the latter. In a study of disparities in Texas, Wolverton (2009) came to
the opposite conclusion. Since most studies rely on cross-sectional data for a single time
period, such longitudinal analyses are rare. But the finding in many cross-sectional
studies that race and ethnicity are statistically significant predictors of hazard proximity
and exposure, even when controlling for income (see, for example, Downey and
Hawkins, 2008; Ash and Fetter, 2004; and Morello-Frosch et al., 2002) suggests that
insofar as post-siting ‘move-in’ does contribute to the disparities, lower property values
are not the sole mechanism: racial discrimination in housing markets appears to play a
compounding role.



Whatever the relative importance of these different explanations, the existence of
environmental disparities in the United States along racial and ethnic lines is now well-
established. The extent of these disparities is far from uniform across the country,
however, as documented in several recent studies (Ash et al. 2009; Downey, 2007, 2008).
Spatial variation across urban areas in the extent of environmental disparities opens
possibilities for quantitative analysis of their correlates — both causes and consequences.

The hypothesis that the extent of disparity is correlated with the overall magnitude of
pollution can be based on causal linkages between the two that run in either or both
directions. On the one hand, wider disparities may lead to more pollution. Both
industry and government are mindful of the relative political influence of communities,
as has been documented in several well-publicized cases (see Cerrel Associates, 1986;
Horswell, 1989). Some communities may have less ability to engage in what Pargal and
Wheeler (1996) term “informal regulation,” which they characterize as imposing a
“price,” or penalty, on polluters. The price varies with “characteristics such as income,
education, level of civic activity, legal or political recourse, media coverage, presence of
a nongovernmental organization, the efficiency of existing formal regulation,” and the
magnitude of the existing pollution burden (ibid., p. 1316). Pollution gravitates to
locations where its implicit price is lower. When there are wide disparities across
communities in the resulting pollution burdens, it becomes easier for those who benefit
as producers or consumers from the polluting activities to distance themselves — or, at
least, to believe that they have distanced themselves — from the environmental and
health consequences (Princen, 1997).

Conversely, more pollution could lead to wider disparities. Assuming that political
power, like income, is a scarce resource that is subject to a “budget constraint,” one may
expect that it will be deployed to what those with power consider its highest-value uses.
In urban areas with a large concentration of industrial facilities for exogenous or
historical reasons, the value to relatively influential communities of policies that result
in disparate burdens may be higher that in urban areas where pollution loads are
relatively light. Such settings may be characterized not only by spatially uneven efforts
to achieve pollution abatement but also by more vigorous efforts to influence decisions
on the siting of new facilities and to perpetuate discriminatory practices in housing
markets.

Both lines of reasoning rest on the premise that what economists call “negative
externalities” — such as toxic air pollution — are not randomly scattered consequences of
missing markets but rather the outcomes of political processes shaped by the
distribution of power. Just as purchasing power determines the distribution of effective
demand for marketed goods and services, so too political power can be seen as
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determining the distribution of politically effective demand for clean air and other non-
marketed aspects of environmental quality. As a result of this phenomenon, which
Boyce (2002, 2007) terms the “power-weighted social decision rule,” power inequalities
can be hypothesized to affect the magnitude of environmental degradation as well as
the distribution of the resulting costs.

In a test of the hypothesis that inequalities in the distribution of power affect the total
magnitude of environmental degradation, Boyce et al. (1999) analyzed variations among
the 50 U.S. states in the distribution of power (proxied by a measure constructed from
data on voter participation, educational attainments, tax fairness, and Medicaid access),
the strength of environmental protection, and environmental quality. Their results were
consistent with the prediction that states with more equitable distributions of power
tend to have stronger environmental policies and better environmental quality.
International evidence on the impacts on environmental quality of political liberties and
civil rights, literacy, and democracy also supports this hypothesis (Torras and Boyce,
1998; Barrett and Graddy, 2000; Harbaugh et al., 2002; Torras, 2006).

Model and Data

To test the hypothesis that urban areas with wider environmental racial disparities tend
to have higher levels of average pollution exposure for all residents, we estimate the
following econometric model:

Toxij = PMDy + ¢Xij + uj + €jj 1)

where Tox is the natural logarithm of average industrial air toxics exposure, MD is the
measure of minority discrepancy described below, X denotes a vector of control
variables (median household income, its square, white share of the population,
manufacturing share of employment, and population density), u is the region-specific
intercept, ¢ is the error term, and i indexes the city (CBSA), and j indexes the Bureau of
Economic Analysis (BEA) region.

To test the hypothesis for specific socioeconomic subgroups of residents, we expand the
model as follows:

Toxik = BxMDj + GXij + ujk + €ijk (2)

where k indexes the subgroup (non-poor white, poor white, non-poor minority, poor
minority).



The unit of analysis is the Core Based Statistical Area (CBSA), the U.S. Census-defined
successor to the Metropolitan Statistical Area. As were MSAs, CBSAs are clusters of
socially and economically linked counties (or county equivalents) around an urban
core. CBSAs include micropolitan areas as well as metropolitan areas; the urban core of
a metropolitan area has population of at least 50,000, while “micropolitan” describes
county clusters with urban cores with population between 10,000 and 50,000. The
inclusion of lower-population cores expands the count of CBSAs to more than 900.!
Although our analysis includes both metropolitan and micropolitan areas, henceforth
we also refer to CBSAs interchangeably as metropolitan areas or cities.

Exposure

The exposure indicator, Toxi, is the average exposure of a CBSA resident, computed as
the population-weighted average of neighborhood (Census block group) exposures in
the metropolitan area. The average exposures of metropolitan-area residents in
specified race and income groups, Toxix, are the sub-population weighted averages of
neighborhood exposures in the metropolitan area; for example, we calculate the
exposure of the average non-poor white resident.

The exposure variables come from the Geographic Microdata of U.S. EPA's Risk-
Screening Environmental Indicators (RSEI) for the year 2005, merged with data from the
2000 U.S. Census. Full documentation of the RSEI model is available from the EPA
website http://www.epa.gov/oppt/rsei. Here we summarize the RSEI Geographic
Microdata and how we used it to calculate exposure and shares (for a more extensive
summary, see Ash and Boyce, 2010).

RSEI estimates location-specific exposure to airborne toxics emitted by industrial
facilities across the United States. It uses information on annual releases of more than
600 chemicals from more than 20,000 facilities, reported in the Toxics Release Inventory
(TRI). The TRI was created at the direction of the Congress under the Emergency
Planning and Community Right-to-Know Act (EPCRA) passed in 1986 after the Bhopal
chemical plant disaster. EPCRA requires industrial facilities to submit annual data to
EPA on deliberate and accidental releases of toxic chemicals into air, surface water, and
the ground and on transfers to offsite facilities. TRI data are available on an annual basis
starting in 1987. In 2005, almost 17,000 TRI-reporting facilities released a total of 1.5
billion pounds of toxic chemicals into the air; an additional 225 million pounds were

1 See http://www.census.gov/population/www/metroareas/aboutmetro.html. We drop six micropolitan
areas with minimal industrial activity in which average exposure is zero (together these represent 0.05%
of the U.S. population), yielding a total of 363 metropolitan areas and 571 mircopolitan areas.



http://www.epa.gov/oppt/rsei
http://www.census.gov/population/www/metroareas/aboutmetro.html

transferred to offsite incinerators.?2

RSEI incorporates information on the fate and transport of releases using a plume
model that takes into account chemical decay rates, stack heights, exit-gas velocities,
average temperature and prevailing winds to estimate local concentrations. For each air
release (each facility x chemical combination), the RSEI models concentrations in each
square kilometer of a 101-km by 101-km grid centered on the releasing facility. The
RSEI data on exposure at the receptor grid cells outflanks the "How near is near?"
question that arises in environmental justice research based on proximity to pollution
sources.’

Although all TRI chemicals are toxic, their human health hazards vary widely. RSEI
incorporates data on relative toxicity to construct a measure of exposure that is additive
across chemicals. Toxicity here refers to chronic human health effects from long-term
exposure, including cancer and non-cancer effects such as developmental toxicity,
reproductive toxicity, and neurotoxicity. The toxicity weights are based on a peer-
reviewed methodology, taking into account the single most sensitive chronic human
health endpoint (cancer or non-cancer).* The resulting toxicity-weighted concentrations
can be added across chemicals from one or more facilities to characterize the total
exposure to industrial air toxics at each square kilometer grid cell.

2 The TRI data, and hence the RSEI data, capture the largest point-source air pollution emissions in the
United States, but they do not capture emissions from mobile sources, such as trucks, automobiles, ships,
and aircraft. The TRI also excludes facilities that are not required to report by virtue of small size or
belonging to non-listed industrial sectors. Potentially significant air polluters not covered for these
reasons include gas stations, dry cleaners, and auto-body shops.

3 For more on plume modeling as a tool in environmental justice research, see Saha and Mohai (2005). For
further discussion of what distance best fits the notion of "proximity" to a point source, see Boyce (2007).

¢ The EPA's toxicity-weighting system is based on peer-reviewed databases from several sources: the
EPA's Integrated Risk Information System (IRIS); the EPA's Office of Pesticide Programs Reference Dose
Tracking Reports; the U.S. Department of Health and Human Services Agency for Toxic Substances and
Disease Registry; the California Environmental Protection Agency Office of Environmental Health
Hazard and Assessment; and the EPA's Health Effects Assessment Tables. For some chemicals listed in
the TRI, no consensus has been reached on the appropriate toxicity weight; these chemicals are currently
excluded from the fully-modeled RSEI score. In recent years, the excluded chemicals have represented
about one percent of the total mass of reported toxic air releases nationwide. The weights do not capture
interactive effects of multiple exposures, nor acute effects of short-term exposures. For more details,
including strengths and limitations of the RSEI approach to toxicity weighting, see

http://www .epa.gov/oppt/rsei/pubs/caveats.html#toxicity.



We merge the toxicity-weighted concentration data at one-square-kilometer resolution
from the RSEI Geographic Microdata with 2000 U.S. Census data, converting the RSEI
grid cell geography to Census blocks. Details of the spatial join are provided in Ash and
Boyce (2010). With block-level toxicity-weighted concentration data, it is possible to
characterize exposure and population risk at higher levels of geographical aggregation
from block groups to counties and CBSAs.

Population risk in the RSEI exposure model is based on the toxicity-weighted
concentration, the number of people exposed, and the age and sex composition of the
population. The latter matters because risk varies by the volume of air inhaled per unit
of body weight. This variation is captured in distinct inhalation exposure factors (IEF)
by age and sex groupings.® The population risk for an area is the product of the
toxicity-weighted concentration and the population adjusted using IEFs for the age-sex
mix. We calculate the average exposure for each metropolitan area by computing the
population-weighted average of toxicity-weighted concentrations over all block-groups.

Using Census data on the percentage of specific subgroups in each block, we allocate
exposure across subgroups and compute the average burden by subgroup and share of
total burden borne by the subgroup. We group all persons other than non-Hispanic
whites into the category of “minority.” We classify as “poor” all households falling
below the federal poverty level in 2000.°

Minority discrepancy

The minority discrepancy variable, MDj, is the share of the total burden of industrial air
toxic releases that is borne by members of minority groups less the share of minorities
in the population of the metropolitan area:

> 7,*ToxConc,; | >Pop,
| _k 3
Zénj XTOXCOI’]C.U— Popij 3)

MDDy = 1

5 The IEFs are intended to reflect biological differences in inhalation uptake by age and sex, although
some analysts have criticized them for false precision (Morello-Frosch, personal communication, 2007).

¢ In the Census, income data are available only down to the block-group level. We conduct our analysis at
this geographic unit.



where i and j is CBSA and metropolitan region, respectively; k indexes minority sub-
group; | indexes block group, vy denotes the white population adjusted using IEFs for
the age-sex mix as described above, and 0 is the total population adjusted using IEFs for
the age-sex mix.

The discrepancy measure is expressed as the amount in percentage points by which the
minority share of health risk exceeds the minority share in the population. If members
of minority groups are disproportionately more exposed, the variable has a positive
sign. Note that our discrepancy measure is purely distributional: it does not reflect the
level of risk from pollution exposure, only the extent to which the risk (whatever its
level) is borne disproportionately by minorities.

To illustrate the discrepancy measure, we select those metropolitan areas that have both
an above-average level of resident exposure and a population large enough to rank
among the country's 100 biggest metropolitan communities. Table 1 lists the ten
metropolitan areas from this universe that have the largest minority discrepancies.
Topping the list is Birmingham, Alabama, where minorities account for 62% of the
health risk as compared to 31% of the population, a discrepancy of 31 percentage points.
Baton Rouge, Louisiana ranks second, followed by Memphis, Louisville, and Chicago.

[INSERT TABLE 1 HERE]
Control variables

We include four control variables in our analysis. Median household income is calculated
from 2000 U.S. Census data. In our econometric analysis, we include both income and
its square, allowing for the possibility of non-linear effects, including the inverted-U
relationship between environmental quality and income found in some studies on the
“environmental Kuznets curve” (see, for example, Grossman and Krueger, 1995).

The white share of CBSA population, also calculated from 2000 U.S. Census data, is
included to capture differences in inter-city differences in racial composition. The
direction of the effect is ambiguous: cities with a high percentage minority population
may receive less attention from state and federal regulators (Hird and Reese, 1998); but
such cities may have disproportionately suffered deindustrialization in recent decades.

The share of residents employed in manufacturing in the CBSA is obtained from the 2000
U.S. Census of Population and Housing. This is sometimes used as a control variable in
environmental justice analysis (see, for example, Sicotte and Swanson, 2007; Anderton
et al., 1994). although it may over-control if initial facility siting is influenced by
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demographics; that is, the manufacturing share of employment may not, in fact, be a
pre-treatment covariate. Including it as a control therefore generates results that are
conservative with respect to findings of environmental injustice.

Population density is also obtained from the 2000 U.S. Census of Population and
Housing. In common with a number of other studies (Ash and Fetter, 2004; Pastor et al.,
2005), we include this as a control. On the one hand, land-use planners may seek to
locate polluting facilities in low-density areas to minimize population exposure. On the
other hand, high-density areas may have historical patterns of greater industrial
activity. The inclusion of population density as a control allows for both possibilities.

Summary statistics for all variables are reported in Table 2. Toxic exposure tends to be
higher for minorities (mean of 276, median of 71) than for whites (mean of 198, median
of 62) and higher for the poor than for the non-poor, findings that are consistent with an
overall pattern of environmental inequality. The high mean values for the exposure
variables relative to their medians reflects a significant right-skew, as do the large
standard deviations and wide range of values. This motivates our use of natural
logarithms in the econometric analysis.

[INSERT TABLE 2 HERE]

The mean value for minority discrepancy is 0.04, indicating that for the average city, the
minority share of total health risk from exposure to industrial air toxics exceeds the
minority share of the population by 4 percentage points. Since the average minority
share of the population is 21 percent (the average white population share is 79 percent),
this implies that in the average CBSA, minorities bear roughly 25 percent of the human
health risk.” The median value for minority discrepancy is 0.02, indicating the majority
of U.S. cities are characterized by at least some degree of disproportionate minority
exposure to industrial air toxics. However, the range is again large — from negative 0.39
to positive 0.48 — indicating wide variations across cities in this respect, including the
existence of some cities where the white share of health risks exceeds their share of the
population.

7 Because minority share of population is positively correlated with city size, the minority share of the
average CBSA is less than the share of minorities in the 934 CBSAs in total (total minorities divided by
total population), which is 32%.
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Results

In Table 3 we present a bivariate analysis of the relationships between average
exposure, in aggregate and by population subgroup, and minority discrepancy. For this
purpose, we partition cities into three categories by the level of minority discrepancy,
that is, the extent to which minorities bear disproportionate risk from industrial toxics.
The first column shows exposure for the 75 percent of cities with the lowest minority
discrepancy, which together constitute 700 CBSAs with total population of 124 million
(slightly less than half of the metropolitan population of the United States). In these
cities, the minority discrepancy is smaller than 6 percentage points. The middle column
shows exposure for the next 20 percent of cities, 187 CBSAs with 115 million residents,
with “medium” minority discrepancy between 6 and 18 percentage points. The final
column shows exposure for the 5 percent of cities with the highest minority
discrepancy, in excess of 18 percentage points. These 47 CBSAs together have a
population of almost 23 million, 8.7 percent of the country’s total metropolitan
population.

[INSERT TABLE 3 HERE]

Even in the low discrepancy category, average minority exposure exceeds average
white exposure. The minority/white exposure ratio rises from 1.1 (208/185) in the low-
discrepancy cities to 1.8 in the medium-discrepancy cities and to 2.8 (827/298) in the
high-discrepancy cities. The most striking findings, however, are that average toxic
exposure of all residents and of each population subgroup, including whites, is lowest
in the low-discrepancy cities and highest in the high-discrepancy cities. Comparing
these two categories, the high-discrepancy/low-discrepancy ratio for all residents is 2.2
(418/186). The ratio is highest for the poor minority subgroup, for whom average
exposure levels are 4.5 times higher (986/219) in high-discrepancy cities than in low-
discrepancy cities. But the correlation remains positive among non-poor whites, for
whom the ratio is 1.5 (282/184) as well as poor whites, for whom the ratio is 2.1
(419/197).

Figure 1 depicts the findings for minorities and for whites. Toxic exposure for
minorities worsens dramatically from low-discrepancy to high-discrepancy cities, but
exposure also worsens for whites. These results suggest environmental injustice is bad
for white people — and, not surprisingly, even worse for minorities.®

8 The result is all the more striking when we consider that one might expect, ceteris paribus, a negative
relationship between exposure and discrepancy. The reason is that facilities with a wider geographic
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[INSERT FIGURE 1 HERE]

The results of our econometric analysis provide further support for the existence of a
positive relationship between minority discrepancy and toxic exposure, both for
metropolitan residents as a whole and for subgroups of the population. Table 4 presents
the results from estimating our first equation, with toxic exposure of the average CBSA
resident as the dependent variable.

[INSERT TABLE 4 HERE]

In column (1), we first estimate the relationship between average exposure and CBSA
median income alone. The estimated coefficients on income and its square indicate that
exposure to industrial air toxics rises with income up to a point—roughly $40,000 per
household, slightly above the sample mean—and then decreases as income rises further
beyond that point. This inverted U-shaped relationship, sometimes dubbed “the
environmental Kuznets curve,” has been observed in a number of studies (but by no
means all) of how pollution varies with income at the national level. One explanation in
the present case may be that the upward-sloping portion of the curve reflects a
concomitant rise in both pollution and income with increasing industrial activity, while
the downward-sloping portion reflects increased post-industrial economic activity, with
polluting industries “outsourced” to other cities or countries, coupled perhaps with
more effective citizen demand for pollution abatement in cities with above-average
incomes. This finding from inter-CBSA variations cannot be generalized, however, to
the income-exposure relationship within CBSAs. Results reported by Ash and Fetter
(2004) indicate that within CBSAs, additional income is negatively correlated with toxic
exposure across the observed income range. That is, in any given city, people in
wealthier neighborhoods generally breathe less toxic air pollution than people in poorer
neighborhoods. The same relationship is suggested by the poor/non-poor comparisons
in Table 2.

In column (2), we include minority discrepancy in the estimating equation. Its estimated
effect on toxic exposure is positive and statistically significant. That is, places where
minorities bear a disproportionate share of the toxic burden also tend to have higher
overall levels of toxic pollution. The estimated coefficient implies that a one percentage
point increase in minority discrepancy (e.g., from 0.04 to 0.05) is associated with an 8.4%

impact by virtue of tall stack heights, high exit velocities and/or strong prevailing winds are likely to
impact both more people and a more heterogeneous population. By virtue of impacting more people they
raise average CBSA exposure, and by virtue of impacting a more heterogeneous population there is less
discrepancy.
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increase in exposure for the average resident. As shown in columns (3) and (4), the
effect remains quite strong even after adding the control variables and regional dummy
variables to the equation. This finding is consistent with our hypothesis that the extent
of racial and ethnic disparity in the distribution of pollution burdens is positively
correlated with the overall level of pollution.

In column (3), we add the control variables. Three variables — the white share of the
CBSA'’s population, the manufacturing share of employment, and population density —
are positively correlated with average toxic exposure. The estimated coefficient on the
white share implies that a one percentage point increase in this variable (e.g., from 0.79
to 0.80) is associated with a 1.6% increase in exposure for the average resident. In other
words, inter-city variations do not mirror the intra-city correlation between race and
pollution exposure.

Finally, in column (4) we add dummy variables for the BEA regions. The estimated
coefficients represent shifts in the intercept term relative to Region 1 (New England).
The results indicate that, all else equal, exposure is lowest in the Rocky Mountain region
and highest in the Great Lakes region. Again, most salient from the standpoint of our
hypothesis, the estimated coefficient on minority discrepancy remains positive and
statistically significant. In this specification, a one percentage point increase in minority
discrepancy is associated with a 6.8 percent increase in average toxic exposure. Moving
from a city with no minority discrepancy to a city with a minority discrepancy of 6
percentage points, the threshold for the “medium” category in Table 4, thus is
associated with a 41 percent increase in toxic exposure.

Table 5 presents the results from estimating our second equation, showing the
relationship between minority discrepancy and the average toxic exposure experienced
by different race and class subgroups within the population. For this purpose, we use
the same set of independent variables as in the final column of Table 4. For comparison,
column (1) again shows the results for all residents. In columns (2) to (5), the dependent
variables are the average toxic exposure experienced by non-poor whites, poor whites,
non-poor minorities and poor minorities, respectively.

The estimated coefficient on minority discrepancy is positive and statistically significant
for each subgroup, and the estimated coefficients on the other independent variables
are quite stable.” Unsurprisingly, we find that minority discrepancy has a greater effect

® Among the other independent variables, the largest variation is found in the estimated coefficient on the
white share of the CBSA population, which rises from 1.0 for whites to 1.2 for non-poor minorities and 1.3
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on the toxic exposure levels of minorities than whites. A one percentage point increase
in the minority discrepancy is associated with a 9.5% increase in exposure for non-poor
minorities and a 10.6% increase for poor minorities. But a higher minority discrepancy
does not translate into better environmental outcomes for whites. On the contrary, a one
percentage point increase in the minority discrepancy is associated with a 4.8% increase
in exposure for non-poor whites and a 5.9% increase for poor whites. These results
again are consistent with the hypothesis that environmental justice is good for white
folks: in cities where minorities bear a greater share of the air toxics burden, whites
breathe worse air.

Conclusion

An analysis of inter-city variations in exposure to industrial air toxics suggests that the
answer to the question posed in the title of this paper is “Yes.” Greater minority
discrepancy, here defined as the difference between the minority share of exposure
hazard and the minority share of the population, is associated with higher exposures
not only for minorities but also for whites. A one percentage point increase in minority
discrepancy is associated with roughly a 10% increase in exposure for minorities and
with a 5% increase in exposure for whites. Within both groups, the increases are
somewhat larger for the poor than the non-poor.

The extent of minority discrepancy varies substantially across the United States. In 75%
of CBSAs that are home to 47% of the country’s total metropolitan population, minority
discrepancy is less than 6 percentage points. In 5% of CBSAs that are home to almost 9%
of the metropolitan population, the discrepancy is more than 18 percentage points.
Average exposures for all residents are more than twice as high in the latter category
than in the former. Exposures for whites are 1.6 times higher in the high-discrepancy
cities, and exposures for minorities are roughly 4 times higher.

These results are consistent with the hypothesis that greater inequality in the
distribution of environmental burdens is associated with higher burdens overall.
Plausible causal explanations for this relationship can be posited in both directions:
from greater discrepancies to higher exposures, and from higher exposures to greater
discrepancies.

for poor minorities. This implies that minority exposure increases as the minority share of population
declines.
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The perception that the costs of exposure to air toxics can be shifted onto others may
lead to greater acceptance of new polluting facilities as well as to weaker pollution
abatement efforts at existing facilities. Insofar as this contributes to the correlation
between inequality and pollution, our finding that whites, too, face higher exposures in
high-discrepancy cities implies that they have an inordinate belief in the efficacy of
pollution shifting, or that they care more about their relative exposure to industrial air
toxics than their absolute exposure, or both.

Conversely, higher pollution levels may lead to greater discrepancies in pollution
burdens. Cities may have relatively high industrial air toxics emissions for a variety of
reasons apart from the presence of wide minority discrepancies, related, for example, to
the geography of transportation infrastructure or historical patterns of settlement and
economic development. In such settings, more “political capital” may be invested in
efforts to reduce pollution, and these efforts may be more effective in some
communities than in others owing to differences in political influence. Similarly, more
political capital may be invested in efforts to influence siting decisions or to institute
and maintain housing market discrimination that reinforces environmental inequities.
Future longitudinal studies may shed some light on the relative strength of the causal
linkages running in both directions.

The results reported in this study imply the existence of a tight nexus between
environmental quality, race, and power in the United States. Whatever the mix of
underlying dynamics in the correlation between average exposures and minority
discrepancies, the fact that minorities face greater pollution burdens reflects racial
disparities in the distribution of power. The evidence presented here suggests that
efforts to reduce these disparities could lead to environmental improvements that
benefit all Americans.

15



References

Anderton, D. L., Anderson, A. B., Oakes, J. M. and Fraser, M. 1994. Environmental
equity: The demographics of dumping. Demography 31(2), 221-240.

Ash, M., and Boyce, J.K. 2010. Measuring corporate environmental justice performance.
Corporate Social Responsibility and Environmental Management, forthcoming.

Ash, M., Boyce, ].K., Chang, G., Pastor, M., Scoggins, J. and Tran, J. April 2009. Justice in
the Air: Tracking Toxic Pollution from America’s Industries and Companies to Our
States, Cities, and Neighborhoods. Amherst: Political Economy Research Institute.

Ash, M. and Fetter, T. R. 2004. Who lives on the wrong side of the environmental
tracks? Evidence from the EPA’s Risk-Screening Environmental Indicators Model.
Social Science Quarterly 85(2), 441-462.

Banzhaf, H. Spencer and Walsh, Randall P. 2006. Do People Vote with Their Feet? An
Empirical Test of Environmental Gentrification. Washington, DC: Resources for the
Future, Discussion Paper No. 06-10.

Barrett S., and Graddy K. 2000. Freedom, growth and the environment. Environment
and Development Economics 5:433-56.

Been, V. 1994. Locally undesirable land uses in minority neighborhoods: Disparate
siting or market dynamics? The Yale Law Journal 103, 1383-1422.

Boyece, J. K. 2007. Inequality and environmental protection, in J.-M. Baland, P. Bardhan
and S. Bowles, eds., Inequality, Collective Action, and Environmental Sustainability.
Princeton: Princeton University Press, 314-348.

Boyce, ].K. 2002. The Political Economy of the Environment. Aldershot: Edward Elgar.

Boyce, J. K., Klemer, A. R.,, Templet, P. H. and Willis, C. E. 1999. Power distribution, the
environment, and public health: A state-level analysis. Ecological Economics 29, 127-
140.

Bullard, R. D. 1990. Dumping in Dixie: Race, Class, and Environmental Quality.
Boulder, CO: Westview.

Bullard, R. D., Mohai, P., Saha, R., and Wright, B. 2007. Toxic Wastes and Race at
Twenty 1987-2007: Grassroots Struggles to Dismantle Environmental Racism in the

16



United States. Cleveland OH: United Church of Christ Justice and Witness Ministry.

Cerrell Associates, Inc. 1984. Political Difficulties Facing Waste-to-Energy Conversion
Plant Siting. Report prepared for California Waste Management Board, Los Angeles,
CA.

Commission for Racial Justice (CR]). 1987. Toxic Waste and Race in the United States: A
National Report on the Racial and Socioeconomic Characteristics of Communities
with Hazardous Waste Sites. New York: United Church of Christ.

Crowder, K. and L. Downey. 2010. Interneighborhood Migration, Race, and
Environmental Hazards: Modeling Microlevel Processes of Environmental
Inequality. American Journal of Sociology 115(4), 1110-1149.

Downey, L. 2007. US metropolitan-area variation in environmental inequality
outcomes. Urban Studies 44, 953-977.

Downey, L. 2008. Environmental Inequality in Metropolitan America. Organization &
Environment 21(3), 270-294.

Downey, L. and Hawkins. 2008. Race, Income, and Environmental Inequality in the
United States. Sociological Perspectives 51(4), 759-781.

Grossman, Gene and Alan Krueger (1995) “Economic Growth and the Environment,”
Quarterly Journal of Economics 110: 353-377.

Hamilton, J. T. 1995. Testing for environmental racism: Prejudice, profits, political
power? Journal of Policy Analysis and Management 14, 107-132.

Harbaugh, William, Arik Levinson, and David Wilson (2002) “Reexamining the Empirical
Evidence for an Environmental Kuznets Curve,” Review of Economics and Statistics
84(3): 541-551.

Hird, J. A. and Reese, M. 1998. The distribution of environmental quality: An empirical
analysis. Social Science Quarterly 79, 694-716.

Horswell, C. 1989. “Exxon Official’'s Memo on Activism Stirs Controversy.” Houston
Chronicle, June 25.

Hurley, A. 1995. Environmental Inequities: Class, Race and Industrial Pollution in Gary,
Indiana, 1945-1990. Chapel Hill: University of North Carolina Press.

17



Mohai, P. and Bryant, B. 1992. Environmental racism: Reviewing the evidence, in B.
Bryant and P. Mohai, eds., Race and the Incidence of Environmental Hazards: A
Time for Discourse. Boulder, CO: Westview, 163-176.

Morello-Frosch, R., M. Pastor, C. Porras and J. Sadd. 2002. Environmental Justice and
Regional Inequality in Southern California: Implications for Future Research.
Environmental Health Perspectives 110(2), 149-154.

Office of Pollution Prevention and Toxics. 2004. Risk-Screening Environmental
Indicators. U.S. Environmental Protection Agency, Washington, DC. Available at
http://www.epa.gov/oppt/rsei

Pargal, Sheoli and Wheeler, David (1996) ‘Informal Regulations in Developing
Countries: Evidence from Indonesia,” Journal of Political Economy, 104(6), 1314-1327.

Pastor, M. 2003. Building Social Capital to Protect Natural Capital: The Quest for
Environmental Justice, in James K. Boyce and Barry G. Shelley, eds., Natural Assets:
Democratizing Environmental Ownership. Washington, DC: Island Press, 77-98.

Pastor, M. 2007. Environmental Justice: Reflections from the United States, in James K.
Boyce, Sunita Narain and Elizabeth A. Stanton, eds., Reclaiming Nature:
Environmental Justice and Ecological Restoration. London: Anthem Press, 351-378.

Pastor, M., Sadd, J. and Hipp, J. 2001. Which came first? Toxic facilities, minority move-
in, and environmental justice. Journal of Urban Affairs 23, 1-21.

Pastor, M., Sadd, J. and Morello-Frosch, R. 2005. The air is always cleaner on the other
side: Race, space, and air toxics exposures in California. Journal of Urban Affairs
27(2).

Pellow, D. N. 2002. Garbage Wars: The Struggle for Environmental Justice in Chicago.
Cambridge, MA: MIT Press.

Princen, Thomas (1997) ‘The Shading and Distancing of Commerce: When Internalization Is
Not Enough,” Ecological Economics, 20, 235-253.

Ringquist, E. J. 2005. Assessing evidence of environmental inequities: A meta-analysis.
Journal of Policy Analysis and Management 24, 223-247.

Saha, R. and Mohai, P. 2005. Historical context and hazardous waste facility siting:
Understanding temporal patterns in Michigan. Social Problems 52, 618-648.

18


http://www.epa.gov/oppt/rsei

Szasz, A. and Meuser, M. 1997. Environmental inequalities: Literature review and
proposals for new directions in research and theory. Current Sociology 45, 99-120.

Torras, Mariano (2006) “The Impact of Power Equality, Income, and the Environment on
Human Health: Some Inter-Country Comparisons,” International Review of Applied
Economics 20 (1/2): 1-20.

Torras, M., and J.K. Boyce (1998), Income, Inequality, and Pollution: AReassessment of
the Environmental Kuznets Curve, Ecological Economics 25(2):147-160.

Wolverton, Ann. 2009. Effects of Socio-Economic and Input-Related Factors on
Polluting Plants' Location Decisions. The B.E. Journal of Economic Analysis & Policy:
Vol. 9 : Iss. 1 (Advances), Article 14.

19



Tables and Figures

Table 1: Disproportionate Impacts on Minorities: Top Ten CBSAs

Minority Minority

Core based statistical area share of share of M tnority
. . discrepancy
toxic score population
Birmingham-Hoover, AL 0.62 0.31 0.31
Baton Rouge, LA 0.62 0.38 0.24
Memphis, TN-MS-AR 0.71 0.48 0.22
Louisville/Jefferson County, KY-IN 0.36 0.17 0.19
Chicago-Naperville-Joliet, IL-IN-WI 0.60 0.41 0.19
Harrisburg-Carlisle, PA 0.33 0.15 0.19
Milwaukee-Waukesha-West Allis, WI 0.43 0.26 0.18
Charleston-North Charleston-Summerville, SC 0.53 0.36 0.17
Augusta-Richmond County, GA-SC 0.55 0.40 0.14
Wichita, KS 0.34 0.20 0.14

CBSAs in this table were taken from the group of the top 100 most populous CBSAs that also have a toxic
exposure level above the average level for all CBSAs. Values in column 3 may not equal the difference
between columns 1 and 2 due to rounding.

20



Table 2: Summary Statistics

Mean Median SD Min Max
Average toxic exposure —all residents 211 65 480 7.3x 109 9720
Average toxic exposure—white
residents 198 62 461 74x10% 9701
Non-poor white 195 61 461 7.0x10% 10040
Poor white 226 66 489  1.3x10% 7427
Average toxic exposure—minority
residents 276 71 668  6.0x10® 10300
Non-poor minority 271 70 638  1.2x10 10650
Poor minority 302 76 751  1.8x100 10690
Minority discrepancy 0.04 0.02 0.07 -0.39 0.48
Median household income $37,150 $36,380 $7,366 $15,890 $78,610
White share 0.79 0.85 0.18 0.02 0.99
Manufacturing share 0.17 0.16 0.09 0.01 0.48
Population density (pop/km?) 56 32 85 0.7 1052

n=934 CBSAs. Toxic exposure measures are from 2005 RSEI data. All other variables are from 2000 U.S.

Census.
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Table 3: Average toxic exposure in low (0-75 percentile), medium (75-95) and high (95-

100) minority discrepancy cities

Minority Discrepancy of the CBSA
Low Medium High
MD below 0.06 MD 0.06-0.18 MD above 0.18
Average exposure of a
person in the group listed =700 CBSAs =187 CBSAs n=47 CBSAs
pop=124.0 million | pop=115.1 million | pop=22.9 million
Everyone 186 252 418
White 185 223 298
Non-poor white 184 213 282
Poor white 197 286 419
Minority 208 392 827
Non-poor minority 209 374 776
Poor minority 219 441 986

Note: Minority discrepancy, a measure of environmental injustice, is the minority share of a CBSAs toxic score minus
the minority share of the CBSAs population. A higher minority discrepancy score indicates greater environmental
injustice.



Table 4: Results from OLS estimation; dependent variable is logged average toxic
exposure of a CBSA resident

1) (2) ®) 4)

Intercept -6.65** -6.44** -5.57** -6.20**
(1.29) (1.25) (1.12) (1.25)

Median HH income of CBSA ($000) 0.50** 0.48** 0.30** 0.32**
(0.06) (0.06) (0.06) (0.06)

Square of CBSA income -0.0057** -0.0055** -0.0039** -0.0038**
(0.0008) (0.0008) (0.0007) (0.0007)

= Implied income turning point $44k $43k $38k $42k
Minority Discrepancy 8.43** 7.25%* 6.79**
(1.10) (0.99) (0.97)

White share of CBSA 1.61** 1.00%
(0.45) (0.50)

Manufacturing share of CBSA 10.64** 7.53**
(0.80) (0.89)

Population density of CBSA (1000/km2) 6.61** 5.13**
(0.96) (0.99)

BEA Region 2—Mideast 1.20
BEA Region 3—Great Lakes 1.47
BEA Region 4—Plains 1.23
BEA Region 5—Southeast 1.60
BEA Region 6 —Southwest 0.12
BEA Region 7—Rocky Mountain -0.22
BEA Region 8 —Far West 0.16
Adjusted R2 0.065 0.120 0.314 0.358

* significant at p<0.05; **significant at p<0.01. 7#=934 CBSAs.

Notes: “Toxic exposure” is the toxicity-weighted concentration of industrial air toxic chemicals reported
in the 2005 TRI, using RSEI fate and transport modeling. “Average toxic exposure” is the mean toxicity-
weighted concentration across block groups within a CBSA. Other independent variables were obtained
from the 2000 U.S. Census. Coefficients on BEA region dummies indicate increase in exposure relative to
BEA Region 1 (CT, ME, MA, NH, RI, VT). BEA Region 2 includes DE, DC, MD, NJ, NY, PA; BEA Region
3 includes IL, IN, MI, OH, WI; BEA Region 4 includes 1A, KS, MN, MO, NE, ND, SD; BEA Region 5
includes AL, AR, FL, GA, KY, LA, MS, NC, SC, TN, VA, WV; BEA Region 6 includes AZ, NM, OK, TX;
BEA Region 7 includes CO, ID, MT, UT, WY; BEA Region 8 includes AK, CA, HI, NV, OR, WA.
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Table 5: Results from OLS estimation; dependent variable is logged average toxic
exposure by race/ethnicity and income

ey

(2)

€)

(4)

®)

All White White  Minority = Minority

non-poor poor  non-poor poor

Intercept -6.20%* -6.34** -6.01** -6.25** -6.21**
(1.25) (1.25) (1.26) (1.27) (1.27)

Median HH income of CBSA ($000) 0.32** 0.32** 0.31** 0.31** 0.30**
(0.06) (0.06) (0.06) (0.06) (0.06)

Square of CBSA income -0.0038**  -0.0038**  -0.0037**  -0.0037**  -0.0036**
(0.0007) (0.0007) (0.0007) (0.0007) (0.0007)

= Implied income turning point $42k $42k $42k $42k $42k
Minority Discrepancy 6.79** 4.83** 5.93** 9.51** 10.59**
(0.97) (0.97) (0.97) (0.98) (0.98)

White share of CBSA 1.00* 1.03% 1.01* 1.24* 1.33**
(0.50) (0.50) (0.51) (0.51) (0.51)

Manufacturing share of CBSA 7.53** 7.58** 7.57%* 7.91% 7.73%*
(0.89) (0.89) (0.89) (0.90) (0.90)

Population density of CBSA (1000/km?2) 5.13** 5.14** 5.35** 5.20** 5.18**
(0.99) (0.99) (0.99) (1.01) (1.00)

BEA Region 2—Mideast 1.20 1.20 1.15 1.26 1.21
BEA Region 3—Great Lakes 1.47 1.48 1.49 1.53 1.51
BEA Region 4—Plains 1.23 1.25 1.21 1.25 1.21
BEA Region 5—Southeast 1.60 1.63 1.50 1.60 1.55
BEA Region 6—Southwest 0.12 0.15 0.04 0.16 0.08
BEA Region 7—Rocky Mountain -0.22 -0.21 -0.25 -0.20 -0.27
BEA Region 8 —Far West 0.16 0.17 0.12 0.19 0.05
Adjusted R2 0.358 0.345 0.351 0.387 0.404

* significant at p<0.05; **significant at p<0.01. 7=934 CBSAs.

Notes: “Toxic exposure” is the toxicity-weighted concentration of industrial air toxic chemicals reported
in the 2005 TRI, using RSEI fate and transport modeling. “Average toxic exposure” is the mean toxicity-
weighted concentration experienced by residents in the group designated in the column headings across
block groups within a CBSA. Other independent variables were obtained from the 2000 U.S. Census.
Coefficients on BEA region dummies indicate increase in exposure relative to BEA Region 1 (CT, ME,
MA, NH, RI, VT). BEA Region 2 includes DE, DC, MD, NJ, NY, PA; BEA Region 3 includes IL, IN, MI,
OH, WL, BEA Region 4 includes IA, KS, MN, MO, NE, ND, SD; BEA Region 5 includes AL, AR, FL, GA,
KY, LA, MS, NC, SC, TN, VA, WV; BEA Region 6 includes AZ, NM, OK, TX; BEA Region 7 includes CO,

ID, MT, UT, WY; BEA Region 8 includes AK, CA, HI, NV, OR, WA.
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Figure 1: Average exposure by race/ethnicity in CBSAs with low, medium and high
minority discrepancy scores (Low, Medium and High categories defined as in Table 3)
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